Skip to main content
Log in

Physics Beyond the Standard Model at Future Lepton Colliders

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract—Possibilities of future lepton colliders in searching for neutral anomaly gauge couplings and dark photons in an invisible decay mode are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Sirunyuan et al. (CMS Collab.), “Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at \(\sqrt s \) = 13 Tev and constraints on anomalous quartic couplings,” J. High Energy Phys. 06, 076 (2020).

  2. G. Aad et al. (ATLAS Collab.), “Measurements of and production in collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector,” Phys. Rev D 93, 112002 (2006).

    Article  ADS  Google Scholar 

  3. T. Behnke et al. (ILC Collab.), “The International Linear Collider technical design report—Vol. 1. executive summary,” arXiv:1306.6327 [physics.acc-ph].

  4. M. J. Boland et al. (CLIC and CLICdp Collab.), “Updated baseline for a staged Compact Linear Collider,” arXiv:1608.07537 [physics.acc-ph].

  5. (CEPC Study Group), “CEPC conceptual design report: Vol. 1–Accelerator,” arXiv:1809.00285 [physics.acc-ph].

  6. A. Denner, S. Dittmaier, M. Roth, and D. Wackeroth, “Probing anomalous quartic gauge-boson couplings via e + e → fermions + γ,” Eur. Phys. J. C 20, 201 (2001).

    Article  ADS  Google Scholar 

  7. M. Köksal, “Anomalous quartic couplings at the CLIC,” Eur. Phys. J. 130, 75 (2015).

    Google Scholar 

  8. O. J. P. Éboli, M. C. Gonzalez-Garcia, and S. F. Novaes, “Quartic anomalous couplings in colliders,” Nucl. Phys. A 411, 381 (1994).

    Article  Google Scholar 

  9. S. Atağ and I. Şahin, “Anomalous quartic WWγγ and ZZγγ couplings in collision with initial beams and final state polarizations,” Phys. Rev. D 75, 073003 (2007).

    Article  ADS  Google Scholar 

  10. O. J. P. Éboli and J. K. Mizukoshi, “Probing anomalous quartic couplings in eγ and γγ colliders,” Phys. Rev. D 64, 075011 (2001).

    Article  ADS  Google Scholar 

  11. S. C. ĺnan and A. V. Kisselev, “Probing anomalous quartic γγγγ couplings in light-by-light collisions at the CLIC,” Eur. Phys. J. C 81, 664 (2021).

  12. S. C. ĺnan and A. V. Kisselev, “Probing anomalous γγγZ couplings through production in collisions at the CLIC,” J. High Energy Phys. 10, 121 (2021).

  13. S. Fichet et al., “Light-by-light scattering with intact protons at the LHC: from Standard Model to new physics,” J. High Energy Phys. 02, 165 (2015).

    Article  ADS  Google Scholar 

  14. C. Baldenegro, S. Fichet, G. von Gersdorff, and C. Royon, “Probing the anomalous γγγZ coupling at the LHC with proton tagging,” J. High Energy Phys. 06, 142 (2017).

    Article  ADS  Google Scholar 

  15. J. P. Lees et al. (BaBar Collab.), “Search for invisible decays of a dark photon produced in collisions at BaBar,” Phys. Rev. Lett. 119, 131804 (2007).

    Article  ADS  Google Scholar 

  16. B. Ablikim et al. (BESIII Coll.), “Dark photon search in the mass range between 1.5 and 3.4 GeV/c 2,” Phys. Lett. B 774, 252 (2017).

    Article  ADS  Google Scholar 

  17. A. Anastasi et al. (KLOE Collab.), “Limit on the production of a low-mass vector boson in e + e Uγ, Ue + e with the KLOE experiment,” Phys. Lett. B 750, 663 (2015).

    Article  ADS  Google Scholar 

  18. A. Anastasi et al. (KLOE-2 Collab.), “Combined limit on the production of a light gauge boson decaying into μ+μ and π+π,” Phys. Lett. B 784, 336 (2018).

    Article  ADS  Google Scholar 

  19. E. Kou et al. (Belle II Collab.), “The Belle II physics book,” Prog. Theor. Exp. Phys. 2019, C01 (2019);

    Article  MathSciNet  Google Scholar 

  20. Erratum: Prog. Theor. Exp. Phys. 2020, 029201 (2020).

  21. S. C. ĺnan and A. V. Kisselev, “Search for invisible dark photon in γe scattering at future linear colliders,” Eur. Phys. J. C 88, 592 (2022).

  22. I. F. Ginzburg, G. L. Kotkin, V. G. Serbo, and V. I. Telnov, “Colliding γe and γγ beams based on the single-pass colliders (of VLEPP type),” Nucl. Instrum. Methods 205, 47 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kisselev.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisselev, A.V. Physics Beyond the Standard Model at Future Lepton Colliders. Phys. Part. Nuclei Lett. 20, 364–367 (2023). https://doi.org/10.1134/S154747712303038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747712303038X

Navigation