Skip to main content
Log in

Radiative Transitions of Charmoniums within the Covariant Confined Quark Model

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The dominant one-photon radiative transitions of the charmonium ground and orbitally excited states have been studied within an analytic confinement model. In addition to two fixed basic model parameters (\({{m}_{c}}\) and the confinement scale \(\lambda \)), we introduced only one adjustable parameter common to six charmonium states: \({{\eta }_{c}}\), \(J{\text{/}}\psi \), \({{\chi }_{{c0}}}\), \({{\chi }_{{c1}}}\), \({{h}_{c}}\) and \({{\chi }_{{c2}}}\) to parameterize the quark distribution inside the hadron. Our estimates are in good agreement with the latest data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Zyla et al. (Particle Data Group), “The review of particle physics (2021),” Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  2. M. Ablikim et al. (BESIII Collab.), “Observation of OZI-suppressed decays χcJ → ωϕ,” Phys. Rev. D 99, 012015 (2019);

    Article  ADS  Google Scholar 

  3. R. Aaij et al. (LHCb Collab.), “Model-independent confirmation of the Z(4430) state,” Phys. Rev. D 92, 12009 (2015).

    Article  Google Scholar 

  4. P. Guo, T. Yepez-Martinez, and A. P. Szczepaniak, “Charmonium meson and hybrid radiative transitions,” Phys. Rev. D 89, 116005 (2014).

    Article  ADS  Google Scholar 

  5. S. Barnes, S. Godfrey, and E. S. Swanson, “Higher charmonia,” Phys. Rev. D 72, 054026 (2005).

    Article  ADS  Google Scholar 

  6. G. Ganbold, “Glueballs and mesons: The ground states,” Phys. Rev. D 79, 034034 (2009).

    Article  ADS  Google Scholar 

  7. G. Ganbold, “QCD effective coupling in the infrared region,” Phys. Rev. D 81, 094008 (2010).

    Article  ADS  Google Scholar 

  8. G. V. Efimov and G. Ganbold, “Meson spectrum and analytic confinement,” Phys. Rev. D 65. 054012 (2002);

    Article  ADS  Google Scholar 

  9. G. Ganbold, “Hadron spectrum and infrared-finite behavior of QCD running coupling,” Phys. Part. Nucl. 43, 79 (2012).

    Article  Google Scholar 

  10. T. Branz, A. Faessler, M. A. Gutsche, and M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement,” Phys. Rev. D 81, 034010 (2010).

    Article  ADS  Google Scholar 

  11. G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, “Radiative transitions of charmonium states in the covariant confined quark model,” Phys. Rev. D 104, 094048 (2021).

    Article  ADS  Google Scholar 

  12. G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, “On the meson mass spectrum in the covariant confined quark model,” J. Phys. G 42, 075002 (2015).

    Article  ADS  Google Scholar 

  13. R. Aaij et al. (LHCb Collab.), “Measurement of the cross-section ratio \(\sigma ({{\chi }_{{c2}}}){\text{/}}\sigma ({{\chi }_{{c1}}})\) for prompt \({{\chi }_{c}}\) production at \(\sqrt s \) = 7 TeV,” Phys. Lett. B 714, 215 (2012);

    Article  ADS  Google Scholar 

  14. R. Aaij et al. (LHCb Collab.), “Measurement of the relative rate of prompt \({{\chi }_{{c0}}}\), \({{\chi }_{{c1}}}\) and \({{\chi }_{{c2}}}\) production at \(\sqrt s \) = 7 TeV, J. High Energy Phys. 10, 115 (2013).

    ADS  Google Scholar 

  15. D. Becirevic and F. Sanfilippo, “Lattice QCD study of the radiative decays \(J{\text{/}}\psi \to {{\eta }_{c}}\gamma \) and \({{h}_{c}} \to {{\eta }_{c}}\gamma \)” J. High Energy Phys. 01, 028 (2013).

  16. R. Bruschini and P. González, “Radiative decays in bottomonium beyond the long wavelength approximation,” Phys. Rev. D 101, 014027 (2020).

    Article  ADS  Google Scholar 

  17. S. Eichten and H. Godfrey, H. Mahlke, and J. L. Rosner, “Quarkonia and their transitions,” Rev. Mod. Phys. 80, 1161 (2008).

    Article  ADS  Google Scholar 

  18. M. B. Voloshin, “Charmonium,” Prog. Part. Nucl. Phys. 61, 455 (2008).

    Article  ADS  Google Scholar 

  19. Wei-Jun Deng, Li-Ye Xiao, Long-Cheng Gui, and Xian-Hui Zhong, “Radiative transitions of charmonium states in a constituent quark model,” Phys. Rev. D 95, 034026 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurjav Ganbold.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurjav Ganbold Radiative Transitions of Charmoniums within the Covariant Confined Quark Model. Phys. Part. Nuclei Lett. 20, 347–350 (2023). https://doi.org/10.1134/S1547477123030317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030317

Navigation