Skip to main content
Log in

Zig-Zag Diagrams and Conformal Triangles

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We obtain a convenient representation for a series of two-point and four-point diagrams related to the \(D\)-dimensional fishnet field theory. This representation allows one to obtain an exact expression for the zig-zag series diagrams in the \({{\phi }^{4}}\) field theory, which leads to a relatively simple proof of the zig-zag conjecture formulated by D. Broadhurst and D. Kreimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Broadhurst and D. Kreimer, “Knots and numbers in φ4 theory to 7 loops and beyond,” Int. J. Mod. Phys. C 6, 519–524 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. F. Brown and O. Schnetz, “Single-valued multiple polylogarithms and a proof of the zig-zag conjecture,” J. Number Theor. 148, 478–506 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, “New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x space technique,” Nucl. Phys. B 174, 345–377 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  4. K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate beta functions in 4 loops,” Nucl. Phys. B 192, 159–204 (1981).

    Article  ADS  Google Scholar 

  5. D. I. Kazakov, “The method of uniqueness, a new powerful technique for multiloop calculation,” Phys. Lett. B 133, 406–410 (1983).

    Article  ADS  Google Scholar 

  6. D. I. Kazakov, “Multiloop calculations: method of uniqueness and functional equations,” Teor. Mat. Fiz. 62, 127–135 (1984).

    Google Scholar 

  7. D. J. Broadhurst, Massless Scalar Feynman Diagrams: Five Loops and Beyond. Report of the Open University (Milton Keynes, UK, 1985).

  8. N. I. Ussyukina, “Calculation of multiloop diagrams in high orders of perturbation theory,” Phys. Lett. 267, 382—388 (1991).

    Article  Google Scholar 

  9. A. P. Isaev, “Multiloop Feynman integrals and conformal quantum mechanics,” Nucl. Phys. B 662, 461–475 (2003).

    Article  ADS  MATH  Google Scholar 

  10. A. P. Isaev, “Operator approach to analytical evaluation of Feynman diagrams,” Phys. Atom. Nucl. 71, 914–924 (2008).

    Article  ADS  Google Scholar 

  11. N. Gromov, V. Kazakov, and G. Korchemsky, “Exact correlation functions in conformal fishnet theory,” J. High Energy Phys. 08, 123 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. Derkachov and E. Olivucci, “Exactly solvable magnet of conformal spins in four dimensions,” Phys. Rev. Lett. 125, 031603 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Derkachov and E. Olivucci, “Exactly solvable single-trace four point correlators in CFT,” J. High Energy Phys. 02, 146 (2021).

    Article  ADS  MATH  Google Scholar 

  14. S. Derkachov, V. Kazakov, and E. Olivucci, “Basso-Dixon correlators in two-dimensional fishnet CFT,” J. High Energy Phys. 04, 032 (2019).

  15. S. Derkachov, G. Ferrando, and E. Olivucci, “Mirror channel eigenvectors of the D-dimensional fishnets,” J. High Energy Phys. 12, 174 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. N. Vasiliev, Y. M. Pismak, and Y. R. Khonkonen, “1/N expansion: Calculation of the exponent eta in the order 1/N 3 by the conformal bootstrap method,” Theor. Math. Phys. 50, 127–134 (1982).

    Article  Google Scholar 

  17. V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, and I. T. Todorov, “Harmonic analysis on the n-dimensional lorentz group and its application to conformal quantum field theory,” Lect. Notes Phys. 63 (1977).

    MATH  Google Scholar 

  18. I. T. Todorov, M. C. Mintchev, and V. B. Petkova, Conformal Invariance in Quantum Field Theory (Sc. Norm. Sup. Pisa, Italy, 1978).

    MATH  Google Scholar 

  19. V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov, “Dynamical derivation of vacuum operator product expansion in euclidean conformal quantum field theory,” Phys. Rev. D 13, 887 (1976).

    Article  ADS  Google Scholar 

  20. F. A. Dolan and H. Osborn, “Conformal four point functions and the operator product expansion,” Nucl. Phys. B 599, 459–496 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. F. A. Dolan and H. Osborn, “Conformal partial waves and the operator product expansion,” Nucl. Phys. B 678, 491–507 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Basis Theoretical Physics and Mathematics Advancement Foundation. The work of L.A. Shumilov was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2022-289.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Isaev or L. A. Shumilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachev, S.E., Isaev, A.I. & Shumilov, L.A. Zig-Zag Diagrams and Conformal Triangles. Phys. Part. Nuclei Lett. 20, 240–245 (2023). https://doi.org/10.1134/S1547477123030214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030214

Navigation