Skip to main content

Chiral Magnetic Effect and the Heisenberg–Euler Lagrangian

Abstract

In our letter we establish coupling of the effective Heisenberg–Euler Lagrangian on the order of 1/m4 and the Chiral Magnetic Effect known for a massless particles. We consider a generalization of the effective Heisenberg–Euler Lagrangian from QED to QCD and then calculate the induced vector current. Further, considering the vector current, we establish a method to connect the perturbative result with the Chiral Magnetic Effect. We formulate the rule of transit from perturbation to nonperturbation (formula (5)) and obtain the well-known result for a massless particles.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Chiral magnetic effect,” Phys. Rev. D 78, 074033 (2008).

    ADS  Article  Google Scholar 

  2. D. E. Kharzeev, “The chiral magnetic effect and anomaly-induced transport,” Prog. Part. Nucl. Phys. 75, 133 (2014).

    ADS  Article  Google Scholar 

  3. D. E. Kharzeev, K. Landsteiner, A. Schmitt, and H.‑U. Yee, “Strongly interacting matter in magnetic fields,” Lect. Notes Phys. 871, 1–624 (2013).

    Book  Google Scholar 

  4. M. S. Abdallah et al. (STAR Collab), “Search for the chiral magnetic effect with isobar collisions at √SNN = 200 GeV by the STAR Collaboration at RHIC,” arXiv: 2109.00131 [hep-ph] (2021).

  5. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Real-time dynamics of the chiral magnetic effect,” Phys. Rev. Lett. 104, 212001 (2010).

    ADS  Article  Google Scholar 

  6. Y. Hirono, T. Hirano, and D. E. Kharzeev, “The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics,” arXiv: 1412.0311 [hep-ph] (2015).

  7. V. V. Skokov, A. Yu. Illarionov, and V. D. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions,” Int. J. Mod. Phys. A. 24, 5925 (2009).

    ADS  Article  Google Scholar 

  8. H. J. Warringa, “Dynamics of the chiral magnetic effect in a weak magnetic fields,” Phys. Rev. D 86, 085029 (2012).

    ADS  Article  Google Scholar 

  9. V. Domcke, Y. Ema, and K. Mukaida, “Chiral anomaly, Schwinger effect, Euler–Heisenberg Lagrangian and application to axion inflation,” J. High Energy Phys., No. 02, 055 (2020).

  10. O. V. Teryaev, “Axial anomaly for hadrons and QCD matter,” Nucl. Phys. B Proc. Suppl. 219220, 86–93 (2011).

    ADS  Article  Google Scholar 

  11. W. Heisenberg and H. Euler, “Consequences of Dirac’s theory of the positron,” Z. Phys. 98, 714 (1936).

    ADS  Article  Google Scholar 

  12. G. V. Dunne, “Heisenberg-Euler effective lagrangians: Basics and extensions,” in From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection, Ed. by M. Shifman, A. Vainshtein, and J. Wheater (World Scientific, Singapore, 2004), p. 445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shohonov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teryaev, O.V., Shohonov, D.A. Chiral Magnetic Effect and the Heisenberg–Euler Lagrangian. Phys. Part. Nuclei Lett. 19, 317–319 (2022). https://doi.org/10.1134/S1547477122040203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122040203