Skip to main content
Log in

Main Results of Neutronical Study about ADS with Ion Beams and Implications on Experiments Planning

  • NEUTRON PHYSICS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The conditions which maximize the efficiency of an accelerator driven systems (ADS) are reviewed. The influence of particle beam, accelerator type, target geometry and composition are studied, searching for the conditions which ensure high energy gain, safe exploitation and deeper burning of the actinides, with longer periods between refueling. A core with criticality coefficient keff of 0.985–0.988, lower enrichment, converter of beryllium with radius 10–20 cm and length 110–120 cm represents a proper choice. The advantage of ion beams from 7Li and 20Ne with energies from 0.25 to 0.75 AGeV is underlined. Values of the energy gain in the range 20–50 can be attained with ion beams. A proposal for the design of a target dedicated to the experimental study is presented. The target consists of rods from enriched U (5–10% 235U) distributed in 6–8 layers inside a cylinder from Pb or graphite, with length 150 cm and radius 70 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. C. Rubbia et al., “An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator,” CERN/AT/93-47 (1993).

  2. S. Toshinobu, “Research activities for accelerator-driven transmutation system at JAERI,” Prog. Nucl. Energy 47, 314–326 (2005).

    Article  Google Scholar 

  3. Z. Zhao, Z. Chen, and H. Chen, “Preliminary optimization of proton energy and target for lead-bismuth eutectic target of a demonstration ADS,” Prog. Nucl. Energy 71, 117–121 (2014).

    Article  Google Scholar 

  4. F. Fiori and Z. Zhou, “A study on the chinese nuclear energy options and the role of ADS reactor in the Chinese nuclear expansion,” Prog. Nucl. Energy 91, 159–169 (2016).

    Article  Google Scholar 

  5. S. R. Hashemi-Nezhad, W. Westmeier, M. Zamani-Valasiadou, B. Thomauske, and R. Brandt, “Optimal ion beam, target type and size for accelerator driven systems: Implications to the associated accelerator power,” Ann. Nucl. Energy 38, 1144–1155 (2011).

    Article  Google Scholar 

  6. M. Paraipan, A. A. Baldin, M. G. Kadykov, and S. I. Tyutyunnikov, “Investigation of the possibility to use ion beams for ADS through simulation in GEANT4,” Pos (Baldin ISHEPP XXI), 088 (2012).

  7. M. Paraipan, A. A. Baldin, E. G. Baldina, and S. I. Tyutyunikov, “Light ion beams for energy production in ADS,” EPJ Web of Conf. 173, 04011 (2018), Ann. Nucl. Energy 110, 973–982 (2017).

    Article  Google Scholar 

  8. M. Paraipan, V. Javadova, and S. I. Tyutyunnikov, “Aspects of target optimization for ADS with light ion beams at energies below 0.5 AGeV,” Prog. Nucl. Energy 120, 103221 (2020). https://doi.org/10.1016/j.pnucene.2019.103221

    Article  Google Scholar 

  9. S. Agostinelli et al., “GEANT4 a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).

    Google Scholar 

  10. A. A. Baldin, A. I. Berlev, I. V. Kudashkin, G. Mogildea, M. Mogildea, M. Paraipan, and S. I. Tyutyunnikov, “Simulation of neutron production in heavy metal targets using GEANT4 software,” Phys. Part. Nucl. Lett. 32, 391–402 (2016).

    Google Scholar 

  11. M. Paraipan (E&T Collab.), “Study of neutron spectra in extended U target. New experimental data,” EPJ Web of Conf. 138, 10005 (2017); J. Adam et al., “Secondary particle distributions in an extended uranium target under irradiation by proton, deuteron, and carbon beams,” Nucl. Instrum. Methods Phys. Res., Sect. A 872, 87–92 (2017).

  12. R. Brun et al., “ROOT- an object oriented data analysis framework,” Nucl. Instrum. Methods Phys. Res. A 389, 81–86 (1997).

    Article  ADS  Google Scholar 

  13. Yu. K. Alexandrov, V. A. Rogov, and A. S. Shabalin, “Main features of the BN-800 passive shutdown rods,” in Proceeding of a Technical Committee Meeting, Obninsk, Russia, July 3–7, 1995, IAEA-TECDOC-884, pp. 107–112.

  14. E. Bubelis et al., “LFR safety approach and main ELFR safety analysis results,” IAEA-CN-199/297 (2015).

  15. M. Edelmann, G. Kussmaul, and W. Väth, “Development of passive shut-down systems for the european fast reactor EFR,” in Proceeding of a Technical Committee Meeting, Obninsk, Russia, July 3–7, 1995, IAEA-TECDOC-884, pp. 69–79.

  16. Muhammad Ali Shahzada, Li Qind, and Syed Suleman Imama, “Analysis of lead-cooled fast reactor using a core simulator,” Prog. Nucl. Energy 104, 229–241 (2018).

    Article  Google Scholar 

  17. Ch. Shen, X. Zhang, Ch. Wang, L. Cao, and H. Chen, “Transient safety analysis of M2LFR-1000 reactor using ATHLET,” Nucl. Eng. Tech. 51, 116–124 (2019).

    Article  Google Scholar 

  18. T. Suzuki, X.-N. Chen, A. Rineiski, and W. Maschek, “Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-III code,” Nucl. Eng. Des. 235, 2594–2611 (2005).

    Article  Google Scholar 

  19. M. Hashim, L. Cao, Sh. Zhou, R. Ma, Y. Shao, and R. Chen, “SPARK-NC: A lead-bismuth-cooled small modular fast reactor with natural circulation and load following capabilities,” Energies 13, 5410 (2020).

    Article  Google Scholar 

  20. R. Li, X.-N. Chen, C. Matzerath Boccaccini, A. Rineiski, and W. Maschek, “Study on severe accident scenarios: Pin failure possibility of MYRRHA-FASTEF critical core,” Energy Proc. 71, 14–21 (2015).

    Article  Google Scholar 

  21. R. Harish, G. S. Srinivasan, A. Riyas, and P. Mohanakrishnan, “A comparative study of unprotected loss of flow accidents in 500 MWe FBR metal cores with PFBR oxide core,” Ann. Nucl. Energy 36, 1003–1012 (2009).

    Article  Google Scholar 

  22. A. Tentner, S. Kang, and A. Karahan, “Advances in the development of the SAS4A code metallic fuel models for the analysis of prototype Gen-IV sodium-cooled fast reactor postulated severe accidents,” IAEA-CN245-056 (IAEA).

  23. R. Lo Fano and P. Giovanni, “Analysis of the effects caused by the core compaction into LRF reactor,” in Proceedings of the 24th International Conference on Nuclear Engineering, June 26–30, 2016, Charlotte, North Carolina, USA. https://doi.org/10.1115/ICONE24-60022

  24. Y. Iwamoto, H. Iwamoto, M. Harada, and K. Niita, “Calculation of displacement cross-sections for structural materials in accelerators using PHITS event generator and its applications to radiation damage,” J. Nucl. Sci. Technol. 51, 98–107 (2014).

    Article  Google Scholar 

  25. S. Bortot, A. Moisseytsev, J. J. Sienicki, and C. Artioli, “Core design investigation for a SUPERSTAR small modular lead-cooled fast reactor demonstrator,” Nucl. Eng. Des. 241, 3021–3031 (2011).

    Article  Google Scholar 

  26. G. de Paula Barros, C. Pereira, M. A. F. Veloso, and A. L. Costa, “Study of an ADS loaded with thorium and reprocessed fuel,” Sci. Technol. Nucl. Install. 2012, 934105 (2012). https://doi.org/10.1155/2012/934105

    Article  Google Scholar 

  27. Y. Kadi, “Transmutation capabilities of the CERN energy amplifier system,” Progr. Nucl. Energy 49, 606–616 (2007).

    Article  Google Scholar 

  28. Q. Liu, Z. Zhao, and K. Fukuda, “Transient heat transfer for forced flow of helium gas along a horizontal plate with different widths,” Int. J. Heat Mass Transfer 75, 433–441 (2014).

    Article  Google Scholar 

  29. Q. Liu, W. Li, A. Mitsuishi, M. Shibahara, and K. Fukuda, “Transient heat transfer for helium gas flowing over a horizontal cylinder in a narrow channel,” Exp. Heat Transfer 30, 341–354 (2017).

    Article  ADS  Google Scholar 

  30. ESS Technical Design Report, ESS-doc-274 (2013).

  31. M. K. Craddock and K. R. Symon, “Cyclotrons and fixed-field alternating-gradient accelerators,” Rev. Accel. Sci. Technol. 1, 65–97 (2008).

    Article  Google Scholar 

  32. D. Hilscher, U. Jahnke, F. Goldenbaum, L. Pienkowski, J. Galin, and B. Lott, “Neutron production by hadron-induced spallation reactions in thin and thick Pb and U targets from 1 to 5 GeV,” Nucl. Instrum. Methods Phys. Res., Sect. A 414, 100–116 (1998).

    Google Scholar 

  33. J. C. David et al., “Spallation neutron production on thick target at Saturne,” in Proceedings of Workshop on Nuclear Data for the Transmutation of Nuclear Waste: Nuclear Science and Technology in the Service of Mankind, Darmstadt, 2003. http://irfu.cea.fr/dapnia_03_482.pdf.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the grant of Romanian Plenipotentiary at JINR, JINR order 267/20.05.2020 p.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Paraipan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraipan, M.M., Kryachko, I.A., Javadova, V.M. et al. Main Results of Neutronical Study about ADS with Ion Beams and Implications on Experiments Planning. Phys. Part. Nuclei Lett. 19, 129–144 (2022). https://doi.org/10.1134/S1547477122020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122020091

Keywords:

Navigation