Skip to main content
Log in

Reliability Analysis of the Results of the Known Experiments on Measuring of the Sachs Form Factor Ratio Using the Rosenbluth Technique. Polarization of the Final Proton in the \(e\vec {p} \to e\vec {p}\) Elastic Process

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A criterion for assessing the reliability of measurements of the Sachs form factor ratio using the Rosenbluth technique is proposed and applied to an analysis of three known experiments (Andivahis1994, Walker1994, Qattan2005) and a recent experiment on the CEBAF accelerator upgraded to 12 GeV at JLab (arXiv:2103.01842 [nucl-ex]). Based on the results of the JLab polarization experiments on measuring the ratio \({{{{\mu }_{p}}{{G}_{{\text{E}}}}} \mathord{\left/ {\vphantom {{{{\mu }_{p}}{{G}_{{\text{E}}}}} {{{G}_{{\text{M}}}}}}} \right. \kern-0em} {{{G}_{{\text{M}}}}}}\) in the \(\vec {e}p \to e\vec {p}\) process in the kinematics of the SANE Collaboration experiment (2020) on the measurement of double spin asymmetry in the \(\vec {e}\vec {p} \to ep\) process, numerical calculations are performed for the \({{Q}^{2}}\) dependence of polarization transferred to the proton in the \(e\vec {p} \to e\vec {p}\) process when the initial proton at rest is partially polarized along the direction of motion of the detected recoil proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Hofstadter, “Electron scattering and nuclear structure,” Rev. Mod. Phys. 28, 214–254 (1956).

    Article  ADS  Google Scholar 

  2. M. N. Rosenbluth, “High energy elastic scattering of electrons on protons,” Phys. Rev. 79, 615–619 (1950).

    Article  ADS  MATH  Google Scholar 

  3. N. Dombey, “Scattering of polarized leptons at high energy,” Rev. Mod. Phys. 41, 236–246 (1969).

    Article  ADS  Google Scholar 

  4. A. I. Akhiezer and M. P. Rekalo, “Polarization phenomena in the scattering of leptons by hadrons,” Sov. J. Part. Nucl. 4, 277 (1974).

    Google Scholar 

  5. A. I. Akhiezer and M. P. Rekalo, Electrodynamics of Hadrons (Naukova Dumka, Kiev, 1977).

    Google Scholar 

  6. M. V. Galynskii and M. I. Levchuk, “On the polarization of a virtual photon in a reaction epepγ (epeX),” Phys. At. Nucl. 60, 1855 (1997).

    Google Scholar 

  7. R. C. Walker, B. W. Filippone, J. Jourdan, R. Milner, R. McKeown, D. Potterveld, L. Andivahis, R. Arnold, D. Benton, P. Bosted, G. de Chambrier, A. Lung, S. E. Rock, Z. M. Szalata, A. Para, et al., “Measurements of the proton elastic form factors for 1 ≤ Q 2 ≤ 3 (GeV/c)2 at SLAC,” Phys. Rev. D 49, 5671–5689 (1994).

    Article  ADS  Google Scholar 

  8. L. Andivahis, P. E. Bosted, A. Lung, L. Stuart, J. Alster, R. G. Arnold, C. C. Chang, F. S. Dietrich, W. Dodge, R. Gearhart, J. J. Gomez, K. A. Griffien, R. S. Hicks, C. E. Hyde-Wright, C. Keppel, et al., “Measurements of the electric and magnetic form factors of the proton from Q 2 = 1.75 to 8.83 (GeV/c),” Phys. Rev. D 50, 5491–5517 (1994).

    Article  ADS  Google Scholar 

  9. I. A. Qattan, J. Arrington, R. E. Segel, X. Zheng, K. Aniol, O. K. Baker, R. Beams, E. J. Brash, J. Calarco, A. Camsonne, J.-P. Chen, M. E. Christy, D. Dutta, R. Ent, S. Frullani, et al., “Precision Rosenbluth measurement of the proton elastic form factors,” Phys. Rev. Lett. 94, 142301 (2005).

    Article  ADS  Google Scholar 

  10. S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson, “Proton electromagnetic form factors: Basic notions, present achievements and future perspectives,” Phys. Rep. 550–551, 1–103 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash, and C. E. Carlson, “The structure of the nucleon: Elastic electromagnetic form factors,” Eur. Phys. J. A 51, 1 (2015).

    Article  Google Scholar 

  12. M. K. Jones, K. A. Aniol, F. T. Baker, et al. (JLab Hall A Collab.), “\({{G}_{{Ep}}}{\text{/}}{{G}_{{Mp}}}\) ratio by polarization transfer in \(\vec {e}p \to e\vec {p}\),” Phys. Rev. Lett. 84, 1398–1402 (2000).

    Article  ADS  Google Scholar 

  13. O. Gayou, K. Wijesooriya, A. Afanasev, et al. (JLab Hall A Collab.), “Measurements of the elastic electromagnetic form factor ratio \({{\mu }_{p}}{{G}_{{{{E}_{p}}}}}{\text{/}}{{G}_{{{{M}_{p}}}}}\)via polarization transfer,” Phys. Rev. C 64, 038202 (2001).

    Article  ADS  Google Scholar 

  14. O. Gayou, E. J. Brash, M. K. Jones, et al. (JLab Hall A Collab.), “Measurement of \({{G}_{{Ep}}}{\text{/}}{{G}_{{Mp}}}\) in \(\vec {e}p \to e\vec {p}\) to Q2 = 5.6 GeV2,” Phys. Rev. Lett. 88, 092301 (2002).

    Article  ADS  Google Scholar 

  15. V. Punjabi, C. F. Perdrisat, K. A. Aniol, et al. (JLab Hall A Collab.), “Proton elastic form factor ratios to Q2 = 3.5 GeV2 by polarization transfer,” Phys. Rev. C 71, 055202 (2005).

    Article  ADS  Google Scholar 

  16. A. J. R. Puckett, J. Brash, O. Gayou, et al. (JLab Hall A Collab.), “Recoil polarization measurements of the proton electromagnetic form factor ratio to Q2 = 8.5 GeV2,” Phys. Rev. Lett. 104, 242301 (2010).

    Article  ADS  Google Scholar 

  17. A. J. R. Puckett, E. J. Brash, O. Gayou, et al. (JLab Hall A Collab.), “Final analysis of proton form factor ratio data at Q2 = 4.0, 4.8 and 5.6 GeV2,” Phys. Rev. C 85, 045203 (2012).

    Article  ADS  Google Scholar 

  18. A. Liyanage, W. Armstrong, H. Kang, et al. (SANE Collab.), “Proton form factor ratio \({{{{\mu }_{p}}G_{{\text{E}}}^{p}} \mathord{\left/ {\vphantom {{{{\mu }_{p}}G_{{\text{E}}}^{p}} {G_{{\text{M}}}^{p}}}} \right. \kern-0em} {G_{{\text{M}}}^{p}}}\) from double spin asymmetry,” Phys. Rev. C 101, 035206 (2020).

    Article  ADS  Google Scholar 

  19. M. V. Galynskii, “On the measurement of Sachs form factors in processes without and with proton spin flip,” JETP Lett. 109, 1 (2019).

    Article  ADS  Google Scholar 

  20. M. V. Galynskii, “On the transfer of polarization from the initial to the final proton in the elastic process \(e\vec {p} \to e\vec {p}\),” JETP Lett. 113, 555 (2021).

    Article  ADS  Google Scholar 

  21. M. V. Galynskii and R. E. Gerasimov, “Generalized Sachs form factors and the possibility of their measurement in processes without and with proton spin flip,” JETP Lett. 110, 646 (2019).

    Article  ADS  Google Scholar 

  22. P. G. Blunden, W. Melnitchouk, and J. A. Tjon, “Two-photon exchange and elastic electron-proton scattering,” Phys. Rev. Lett. 91, 142304 (2003).

    Article  ADS  Google Scholar 

  23. P. A. M. Guichon and M. Vanderhaeghen, “How to reconcile the Rosenbluth and the polarization transfer methods in the measurement of the proton form factors,” Phys. Rev. Lett. 91, 142303 (2003).

    Article  ADS  Google Scholar 

  24. M. Meziane, J. Brash, R. Gilman, et al. (GEp2γ Collab.), “Search for effects beyond the Born approximation in polarization transfer observables in \(\vec {e}p\)elastic scattering,” Phys. Rev. Lett. 106, 132501 (2011).

    Article  ADS  Google Scholar 

  25. P. G. Blunden, W. Melnitchouk, and J. A. Tjon, “Two-photon exchange in elastic electron-nucleon scattering,” Phys. Rev. C 72, 034612 (2005).

    Article  ADS  Google Scholar 

  26. D. Borisyuk and A. Kobushkin, “Radiative corrections to polarization observables in electron-proton scattering,” Phys. Rev. D 90, 025209 (2014).

    ADS  Google Scholar 

  27. A. V. Afanasev, S. J. Brodsky, E. Carlson Carl, Yu-Chun Chen, and M. Vanderhaeghen, “Two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer,” Phys. Rev. D 72, 013008 (2005).

    Article  ADS  Google Scholar 

  28. J. Arrington, W. Melnitchouk, and J. A. Tjon, “Global analysis of proton elastic form factor data with two-photon exchange corrections,” Phys. Rev. C 76, 035205 (2007).

    Article  ADS  Google Scholar 

  29. D. Borisyuk and A. Kobushkin, “Two-photon exchange at low Q2,” Phys. Rev. C. 75, 038202 (2007).

    Article  ADS  Google Scholar 

  30. D. Borisyuk and A. Kobushkin, “Phenomenological analysis of two-photon exchange effects in proton form factor measurements,” Phys. Rev. C 76, 022201 (2007).

    Article  ADS  Google Scholar 

  31. D. Borisyuk and A. Kobushkin, “Two-photon exchange in a dispersion approach,” Phys. Rev. C 78, 025208 (2008).

    Article  ADS  Google Scholar 

  32. D. Borisyuk and A. Kobushkin, “Two-photon exchange amplitudes for the elastic ep scattering at Q 2 = 2.5 GeV2 from the experimental data,” Phys. Rev. D 83, 057501 (2011).

    Article  ADS  Google Scholar 

  33. C. E. Carlson and M. Vanderhaeghen, “Two-photon physics in hadronic processes,” Ann. Rev. Nucl. Part. Sci. 57, 171–204 (2007).

    Article  ADS  Google Scholar 

  34. J. Arrington, P. G. Blunden, and W. Melnitchouk, “Review of two-photon exchange in electron scattering,” Prog. Part. Nucl. Phys. 66, 782–882 (2011).

    Article  ADS  Google Scholar 

  35. A. Afanasev, P. G. Blunden, D. Hasell, and B. A. Raue, “Two-photon exchange in elastic electron-proton scattering,” Prog. Part. Nucl. Phys. 95, 245–278 (2017).

    Article  ADS  Google Scholar 

  36. I. A. Rachek, J. Arrington, V. F. Dmitriev, V. V. Gauzshtein, R. E. Gerasimov, A. V. Gramolin, R. J. Holt, V. V. Kaminskiy, B. A. Lazarenko, S. I. Mishnev, N. Yu. Muchnoi, V. V. Neufeld, D. M. Nikolenko, R. Sh. Sadykov, Yu. V. Shestakov, et al., “Measurement of the two-photon exchange contribution to the elastic \({{e}^{ \pm }}p\) scattering cross sections at the VEPP-3 storage ring,” Phys. Rev. Lett. 114, 062005 (2015).

    Article  ADS  Google Scholar 

  37. D. Adikaram et al. (CLAS Collab.), “Towards a resolution of the proton form factor problem: New electron and positron scattering data,” Phys. Rev. Lett. 114, 062003 (2015).

    Article  ADS  Google Scholar 

  38. B. S. Henderson et al. (OLYMPUS Collab.), “Hard two-photon contribution to elastic lepton-proton scattering: Determined by the OLYMPUS experiment,” Phys. Rev. Lett. 118, 092501 (2017).

    Article  ADS  Google Scholar 

  39. E. Cline, C. J. Bernauer, and A. Schmidt, “Direct TPE measurement via \({{{{e}^{ + }}p} \mathord{\left/ {\vphantom {{{{e}^{ + }}p} {{{e}^{ - }}p}}} \right. \kern-0em} {{{e}^{ - }}p}}\)scattering at low ε in Hall A,” arXiv: 2103.06301 [nucl-ex].

  40. A. J. R. Puckett, J. C. Bernauer, and A. Schmidt, “Polarization transfer in \({{\vec {e}}^{ + }}p \to {{e}^{ + }}\vec {p}\) scattering using the Super BigBite Spectrometer,” Eur. Phys. J. A 57, 188 (2021).

    Article  ADS  Google Scholar 

  41. M. E. Christy, T. Gautam, L. Ou, B. Schmookler, Y. Wang, D. Adikaram, Z. Ahmed, H. Albataineh, S. F. Ali, B. Aljawrneh, K. Allada, S. L. Allison, S. Alsalmi, D. Androic, K. Aniol, et al., “Form factors and two-photon exchange in high-energy elastic electron-proton scattering,” arXiv: 2103.01842 [nucl-ex].

  42. A. V. Gramolin and D. M. Nikolenko, “Reanalysis of Rosenbluth measurements of the proton form factors,” Phys. Rev. C 93, 055201 (2016).

    Article  ADS  Google Scholar 

  43. J. Ahmed, P. G. Blunden, and W. Melnitchouk, “Two-photon exchange from intermediate state resonances in elastic electron-proton scattering,” Phys. Rev. C 102, 045205 (2020).

    Article  ADS  Google Scholar 

  44. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969; Wiley, New York, 1965).

  45. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

  46. A. J. R. Puckett, “Recoil polarization measurements of the proton electromagnetic form factor ratio to high momentum transfer,” PhD Thesis (Massachusetts Inst. Technol., Boston, 2010); arXiv: 1508.01456 [nucl-ex].

  47. I. A. Qattan, J. Arrington, and A. Alsaad, “Flavor decomposition of the nucleon electromagnetic form factors at low Q2,” Phys. Rev. C 91, 065203 (2015).

    Article  ADS  Google Scholar 

  48. J. J. Kelly, “Simple parametrization of nucleon form factors,” Phys. Rev. C 70, 068202 (2004).

    Article  ADS  Google Scholar 

  49. S. Pacetti and E. Tomasi-Gustafsson, “Form factor ratio from unpolarized elastic electron-proton scattering, Phys. Rev. C. 94, 055202 (2016).

    Article  ADS  Google Scholar 

  50. E. Tomasi-Gustafsson and S. Pacetti, “Two-photon exchange: Myth and history,” Few-Body Syst. 59, 91 (2018).

    Article  ADS  Google Scholar 

  51. J. C. Bernauer et al. (A1 Collab.), “Electric and magnetic form factors of the proton,” Phys. Rev. C 90, 015206 (2014).

    Article  ADS  Google Scholar 

  52. J. C. Bernauer et al. (A1 Collab.), “High-precision determination of the electric and magnetic form factors of the proton,” Phys. Rev. Lett. 105, 242001 (2010).

    Article  ADS  Google Scholar 

  53. J. C. Bernauer, “Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q2 range from 0.004 to 1 (GeV/c)2,” PhD Thesis (Mainz Univ., Inst. Kernphysics, 2010). http://inspirehep.net/record/1358265/ files/bernauer.pdf.

Download references

ACKNOWLEDGMENTS

I thank R. Lednicky for interest in this work and helpful discussions of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Galynskii.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galynskii, M.V. Reliability Analysis of the Results of the Known Experiments on Measuring of the Sachs Form Factor Ratio Using the Rosenbluth Technique. Polarization of the Final Proton in the \(e\vec {p} \to e\vec {p}\) Elastic Process. Phys. Part. Nuclei Lett. 19, 26–36 (2022). https://doi.org/10.1134/S1547477122010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477122010058

Navigation