Skip to main content
Log in

Bogolyubov Variables for an Interacting Field System

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This is the continuation of paper [1], which contained the basic ideas of quantization for nonlinear systems in the neighborhood of nontrivial classical solutions of the equations of motion. Quantization is performed using Bogolyubov variables; this combines an accurate account of conservation laws and perturbation theory and avoids the problem of zero modes. In this paper, the quantization of interacting gravitational and scalar fields is performed using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. V. Ostanina and P. A. Tomasi-Vshivtseva, “Quantization of nonlinear fields using Bogolyubov variables,” Phys. Part. Nucl. Lett. 18, 648–651 (2021).

  2. N. N. Bogolyubov, “One new form of adiabatic perturbation theory in the problem of the interaction of a particle with a quantum field,” Ukr. Mat. Zh. 2 (2), 3 (1950).

    Google Scholar 

  3. R. Arnowitt., S. Deser, and C. Misner, in Gravitation: An introduction to Сurrent Research, Ed. by L. Witten (Wiley, New York, 1962); Chap. 7, pp. 227–265.

  4. R. Arnowitt, S. Deser, and C. W. Misner, “Gravitational electromagnetic couplind and the classical self-energy problem,” Phys. Rev. 120, 863–870 (1960).

    MATH  Google Scholar 

  5. Y. Choquet-Bruhat and R. Georch, Comm. Math. Phys., No. 14, 335 (1969).

  6. J. W. York, “Gravitational degrees of freedom and the initial-value problem,” Phys. Rev. Lett. 26, 1656–1658 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. W. York, “Mapping onto solutions of the gravitational initial value problem,” J. Math. Phys. 13, 125–130 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. E. Fisher and J. E. Marsden, “The Einstein equations of evolution—a geometric approach,” J. Math. Phys. 13, 546–568 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  9. O. A. Khrustalev, M. V. Chichikina, and O. D. Timofeevskaya, “Group variables in quantum gravity,” Mosc. Univ. Phys. Bull. 58, 1 (2002).

    MATH  Google Scholar 

  10. O. A. Khrustalev, M. V. Chichikina, and O. D. Timofeevskaya, “Quantum gravity against the classical background,” Mosc. Univ. Phys. Bull. 58, 1 (2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Ostanina or P. A. Tomasi-Vshivtseva.

Additional information

Translated by E. Baldina

Expansion of the Gravitational Field Hamiltonian

Expansion of the Gravitational Field Hamiltonian

Let us expand the gravitational field Hamiltonian in a series,

$$H = \frac{1}{{\sqrt \gamma }}\left( {{{\pi }_{{st}}}{{\pi }^{{st}}} - \frac{1}{2}{{\pi }^{2}}} \right) - \sqrt \gamma R{\kern 1pt} .$$

The leading order depends on the classical part alone and is a \(c\)-number,

$${{H}_{0}} = \frac{1}{{\sqrt F }}\left( {{{F}_{{{{n}_{{st}}}}}}F_{n}^{{st}} - \frac{1}{2}F_{n}^{2}} \right) - \sqrt F R(F),$$

and the next-to-leading order is linear with respect to quantum additions and derivatives with respect to them,

$$\begin{gathered} {{H}_{1}} = \frac{1}{{\sqrt F }}\left( {\frac{1}{2}\left( {{{F}_{{{{n}_{{kl}}}}}}F_{n}^{{kl}} - \frac{1}{2}F_{n}^{2}} \right)} \right.{{F}^{{st}}}{{{\hat {Q}}}_{{st}}} \\ \left. {\frac{{}}{{}} + \,\,\left( {{{{\hat {P}}}^{{st}}}{{F}_{{{{n}_{{st}}}}}} + F_{n}^{{st}}{{S}_{{st}}}} \right) - {{F}_{n}}\left( {{{{\hat {P}}}^{{st}}}{{F}_{{{{n}_{{st}}}}}} + {{{\hat {Q}}}_{{st}}}F_{n}^{{st}}} \right)} \right) \\ - \,\,\sqrt F \left( {\frac{1}{2}{{F}^{{st}}}{{R}_{{st}}}(F){{{\hat {Q}}}_{{st}}} - {{{\hat {Q}}}^{{st}}}{{R}_{{st}}}(F) + {{F}^{{st}}}{{R}_{{st}}}(F,\hat {Q})} \right). \\ \end{gathered} $$

Let us consider the term \(a\sqrt F {{F}^{{st}}}{{R}_{{st}}}(F,\hat {Q}).\) We recall that \(\Gamma _{{lt}}^{s} = {{\gamma }^{{sp}}}{{\Gamma }_{{ltp}}},\) and the Christoffel numbers are series,

$${{\Gamma }_{{ltp}}} = {{\Gamma }_{{ltp}}}(F) + \frac{1}{g}{{\Gamma }_{{ltp}}}(\hat {Q}) + \frac{1}{{{{g}^{2}}}}{{\Gamma }_{{ltp}}}(A),$$

so

$$\Gamma _{{lt}}^{s} = \Gamma _{{lt}}^{s}(F) + \frac{1}{g}\Gamma _{{lt}}^{s}(\hat {Q}),$$

where

$$\Gamma _{{lt}}^{s}(\hat {Q}) = \left( {{{F}^{{sp}}}{{\Gamma }_{{ltp}}}(\hat {Q}) - {{{\hat {Q}}}^{{sp}}}{{\Gamma }_{{ltp}}}(F)} \right).$$

Taking into account that

$${{\hat {Q}}_{{t{{p}_{{;l}}}}}} = {{\hat {Q}}_{{t{{p}_{{,l}}}}}} - \Gamma _{{lt}}^{m}(F){{\hat {Q}}_{{mp}}} - \Gamma _{{lp}}^{m}(F){{\hat {Q}}_{{mt}}},$$

we note that

$${{\Gamma }_{{ltp}}}(\hat {Q}) = \frac{1}{2}\left( {{{{\hat {Q}}}_{{tp{{;}_{l}}}}} + {{{\hat {Q}}}_{{lp{{;}_{t}}}}} - {{{\hat {Q}}}_{{lt{{;}_{p}}}}}} \right) - 2{{\hat {Q}}_{{mp}}} + \Gamma _{{lt}}^{m}(F),$$

and it can be stated that

$$\Gamma _{{lt}}^{s}(\hat {Q}) = \frac{1}{2}{{F}^{{sp}}}\left( {{{{\hat {Q}}}_{{tp{{;}_{l}}}}} + {{{\hat {Q}}}_{{lp{{;}_{t}}}}} - {{{\hat {Q}}}_{{lt{{;}_{p}}}}}} \right),$$

so the Ricci tensor is also a series,

$${{R}_{{st}}} = {{R}_{{st}}}(F) + \frac{1}{g}{{R}_{{st}}}(F,\hat {Q}) + \frac{1}{{{{g}^{2}}}}{{R}_{{st}}}(F,\hat {Q},A),$$

where

$$\begin{gathered} {{R}_{{st}}}(F,\hat {Q}) = \Gamma _{{st{{;}_{l}}}}^{l}(\hat {Q}) - \Gamma _{{st{{;}_{t}}}}^{l}(\hat {Q}) \\ + \,\,\Gamma _{{st}}^{l}(\hat {Q})\Gamma _{{lm}}^{m}(F) + \Gamma _{{st}}^{l}(F)\Gamma _{{lm}}^{m}(\hat {Q}) \\ - \,\,\Gamma _{{sl}}^{m}(\hat {Q})\Gamma _{{mt}}^{l}(F) - \Gamma _{{sl}}^{m}(F)\Gamma _{{mt}}^{l}(F), \\ \end{gathered} $$

so that

$${{R}_{{st}}}(F,\hat {Q}) = {{\left( {\Gamma _{{st}}^{l}(\hat {Q})} \right)}_{{;l}}} - {{\left( {\Gamma _{{sl}}^{l}(\hat {Q})} \right)}_{{;t}}},$$

and the considered term is equal to

$$\begin{gathered} a\sqrt F {{F}^{{st}}}{{R}_{{st}}}(F,\hat {Q}) = \sqrt F \left( {a{{F}^{{st}}}\Gamma _{{st}}^{l}(\hat {Q})} \right){{,}_{l}} \\ - \,\,\sqrt F \left( {a{{F}^{{st}}}\Gamma _{{sl}}^{l}(\hat {Q})} \right){{,}_{t}} + \sqrt F {{F}^{{st}}}{{a}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}) \\ - \,\,\sqrt F {{F}^{{st}}}{{a}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}); \\ \end{gathered} $$

here,

$${{c}^{s}} = {{a}_{{;t}}}{{F}^{{st}}}.$$

Let us consider the form

$$\sqrt F {{F}^{{st}}}{{a}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}) = \sqrt F {{c}^{s}}\frac{1}{2}{{F}^{{lp}}}\left( {{{{\hat {Q}}}_{{sp{{;}_{l}}}}} + {{{\hat {Q}}}_{{lp{{;}_{s}}}}} - {{{\hat {Q}}}_{{sl{{;}_{p}}}}}} \right).$$

We take into account that the following expression is zero:

$${{F}^{{lp}}}\left( {{{{\hat {Q}}}_{{sp{{;}_{l}}}}} - {{{\hat {Q}}}_{{sl{{;}_{p}}}}}} \right) = 0,$$

since it contains the product \({\text{of}}\) the symmetric and antisymmetric tensors. Similarly,

$$\sqrt F {{F}^{{st}}}{{a}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}) = \frac{1}{2}{{\left( {\sqrt F {{c}^{s}}{{F}^{{lp}}}{{{\hat {Q}}}_{{lp}}}} \right)}_{{;s}}} - \frac{1}{2}\sqrt F {{F}^{{lp}}}{{\hat {Q}}_{{lp}}}c_{{;s}}^{s}$$

and

$$\sqrt F {{F}^{{st}}}{{a}_{{;l}}}\Gamma _{{st}}^{l}(\hat {Q}) = {\text{Div}} + \frac{1}{2}\sqrt F {{F}^{{lp}}}{{\hat {Q}}_{{lp}}}c_{{;s}}^{s} - \sqrt F {{F}^{{sl}}}{{\hat {Q}}_{{lp}}}c_{{;s}}^{p},$$

and finally, the terms take the form

$$a\sqrt F {{F}^{{st}}}{{R}_{{st}}}(F,\hat {Q}) = {\text{Div}} + \sqrt F {{\hat {Q}}_{{st}}}\left( {{{F}^{{sp}}}c_{{;p}}^{t} - {{F}^{{st}}}c_{{;p}}^{p}} \right).$$

Similarly, it can be stated that

$$a\sqrt F {{F}^{{st}}}{{R}_{{st}}}(F,\hat {Q},A) = {\text{Div}} + \sqrt F {{A}_{{st}}}\left( {{{F}^{{sp}}}c_{{;p}}^{t} - {{F}^{{st}}}c_{{;p}}^{p}} \right).$$

Let us consider the following order of these terms:

$$\begin{gathered} a\sqrt F {{F}^{{st}}}{{F}^{{st}}}{{{\hat {Q}}}_{{st}}}{{R}_{{st}}}(F,\hat {Q}) \\ {\text{ = Div}} + \sqrt F {{F}^{{st}}}{{\left( {a\hat {Q}} \right)}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}) \\ - \,\,\sqrt F {{F}^{{st}}}{{\left( {a\hat {Q}} \right)}_{{;l}}}\Gamma _{{st}}^{l}(\hat {Q}). \\ \end{gathered} $$

We introduce the following notation:

$${{r}^{s}} = {{\left( {a\hat {Q}} \right)}_{{;t}}}{{F}^{{st}}},$$

and then direct calculation shows that

$$\begin{gathered} a\sqrt F {{F}^{{st}}}\hat {Q}{{R}_{{st}}}(F,\hat {Q}) = \sqrt F \hat {Q}\left( {{{F}^{{sp}}}r_{{;p}}^{t} - {{F}^{{st}}}r_{{;p}}^{p}} \right) \\ = \sqrt F \left( {{{F}^{{sp}}}c_{{;p}}^{t} - {{F}^{{st}}}c_{{;p}}^{p}} \right){{{\hat {Q}}}_{{st}}}{{{\hat {Q}}}_{{st}}}{{F}^{{st}}} \\ + \,\,a\sqrt F {{F}^{{st}}}\left( {{{F}^{{sp}}}{{F}^{{tr}}} - {{F}^{{st}}}{{F}^{{pr}}}} \right){{{\hat {Q}}}_{{st{{,}_{{pr}}}}}}, \\ \end{gathered} $$

and it can be stated that these terms have the form

$$\begin{gathered} a\sqrt F {{{\hat {Q}}}^{{st}}}{{R}_{{st}}}(F,\hat {Q}) = \sqrt F {{\left( {a{{{\hat {Q}}}^{{st}}}} \right)}_{{;t}}}\Gamma _{{sl}}^{l}(\hat {Q}) \\ - \,\,\sqrt F {{\left( {a{{{\hat {Q}}}^{{st}}}} \right)}_{{;l}}}\Gamma _{{st}}^{l}(\hat {Q}) = \sqrt F \left( {{{F}^{{sp}}}{{a}_{{;tp}}}{{{\hat {Q}}}^{{st}}} - {{F}^{{st}}}{{a}_{{;tp}}}{{{\hat {Q}}}^{{pt}}}} \right) \\ \times \,\,{{{\hat {Q}}}_{{st}}} + a\sqrt F {{F}^{{st}}}\left( {{{F}^{{sp}}}\hat {Q}_{{;tp}}^{{st}} - {{F}^{{st}}}\hat {Q}_{{;tp}}^{{pt}}} \right){{{\hat {Q}}}_{{st}}}. \\ \end{gathered} $$

Therefore,

$$\begin{gathered} {{S}_{1}} = {{{\hat {P}}}^{{st}}}(x{\kern 1pt} '){{F}_{{{{n}_{{st}}}}}}(x{\kern 1pt} ') + F_{n}^{{st}}(x{\kern 1pt} '){{{\hat {Q}}}_{{{{n}_{{st}}}}}}(x{\kern 1pt} ') + a{{H}_{1}}(F,\hat {Q}) \\ = \int\limits_\Sigma {{A}_{{st}}}(x{\kern 1pt} '){{{\hat {P}}}^{{st}}}(x{\kern 1pt} ') + {{B}^{{st}}}(x{\kern 1pt} '){{{\hat {Q}}}_{{st}}}(x{\kern 1pt} '), \\ \end{gathered} $$
$${{A}_{{st}}} = \frac{{2a}}{{\sqrt F }}\left( {{{F}_{{{{n}_{{st}}}}}} - \frac{1}{2}{{F}_{n}}{{F}_{{st}}}} \right),$$
$$\begin{gathered} {{B}^{{st}}} = \frac{a}{{2\sqrt F }}\left( {{{F}_{{{{n}_{{kl}}}}}}F_{n}^{{kl}} - \frac{1}{2}F_{n}^{2}} \right){{F}^{{st}}} \\ - \,\,\frac{{2a}}{{\sqrt F }}\left( {F_{n}^{{st}}F_{n}^{{kl}}{{F}_{{{{n}_{{st}}}}}} - \frac{1}{2}{{F}_{n}}F_{n}^{{st}}} \right) \\ - \,\,a\sqrt F \left( {{{R}^{{st}}} - \frac{1}{2}{{F}^{{st}}}R} \right) - \sqrt F \left( {{{F}^{{sl}}}c_{{;l}}^{t} - {{F}^{{st}}}c_{{;l}}^{l}} \right). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostanina, M.V., Tomasi-Vshivtseva, P.A. Bogolyubov Variables for an Interacting Field System. Phys. Part. Nuclei Lett. 18, 701–708 (2021). https://doi.org/10.1134/S1547477121070074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121070074

Navigation