Skip to main content
Log in

Pauli Ionization Mechanism for Recoil Atoms in Matter

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Free-electron emission by stopping recoil atoms arising from particle–atom collisions in a noble-gas medium is numerically investigated using argon as an example. We demonstrate that, during propagation through matter of recoil atoms with energies over a few keV, vacancies in their internal L-shells arise via the Pauli mechanism with a probability on the order of 100%. As a result, over 30 free electrons are released upon a single interaction act in liquid or gaseous noble gas as a working medium of a particle detector. Thereby, the sensitivity of an argon-filled particle detector is significantly enhanced. In a xenon-filled detector, Pauli ionization sets in at higher recoil-atom energies of   ≳100−200 keV and, therefore, is unlikely to boost the detector sensitivity to light-dark-matter particles, which are generally expected to produce recoil atoms with energies ≲10 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. Chepel and H. Araújo, “Liquid noble gas detectors for low energy particle physics,” J. Instrum. 8, R04001–R04001 (2013).

    Article  Google Scholar 

  2. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rep. 405, 279–390 (2005).

    Article  ADS  Google Scholar 

  3. A. B. Migdal, “Ionization of atoms during α- and β-decay,” Zh. Eksp. Teor. Fiz. 11, 207–218 (1941).

    Google Scholar 

  4. J. Lindhard, “Slowing-down of ions,” Proc. R. Soc. A 311, 11–19 (1969).

    ADS  Google Scholar 

  5. M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal effect in dark matter direct detection experiments,” J. High Energ. Phys. 03, 194–128 (2018).

    Article  ADS  Google Scholar 

  6. L. I. Men’shikov, P. L. Men’shikov, and M. P. Faifman, “Relation of the probability of recoil atom ionization to experimental data on ionization by photons and electrons,” Phys. Part. Nucl. Lett. 18, 173 (2021).

    Article  Google Scholar 

  7. F. Bezrukov, F. Kahlhoefer, and M. Lindner, “Interplay between scintillation and ionization in liquid xenon dark matter searches,” Astropart. Phys. 35, 119–127 (2011).

    Article  ADS  Google Scholar 

  8. H. S. W. Massey, “Collisions between atoms and molecules at ordinary temperatures,” Rep. Prog. Phys. 12, 248–269 (1949).

    Article  ADS  Google Scholar 

  9. D. Hasted, Physics of Atomic Collisions (Butterworth, Washington, D.C., 1964).

    Google Scholar 

  10. W. Brandt and R. Laubert, “Pauli excitation of atoms in collision,” Phys. Rev. Lett. 24, 1037–1040 (1970).

    Article  ADS  Google Scholar 

  11. V. V. Afrosimov and N. V. Fedorenko, “Investigation of the energy of multiply charged ions created by ionization of an atomic gas with positive ions,” Sov. Tech. Phys. 2, 2378 (1957).

    Google Scholar 

  12. V. V. Afrosimov, Yu. S. Gordeev, M. N. Panov, and N. V. Fedorenko, “Investigation of atomic collisions by a coincidence technique,” Sov. Tech. Phys. 9, 1248 (1964).

    Google Scholar 

  13. J. Ziegler, M. Ziegler, and J. Biersack, “SRIM—the stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).

    Google Scholar 

  14. T. H. Joshi, S. Sangiorgio, A. Bernstein, et al., “First measurement of the ionization yield of nuclear recoils in liquid argon,” Phys. Rev. Lett. 112, 171303-1–5 (2014).

    Article  ADS  Google Scholar 

  15. T. Alexander, H. O. Back, H. Cao, et al., “Observation of the dependence on drift field of scintillation from nuclear recoils in liquid argon,” Phys. Rev. D 88, 092006 (2013).

    Article  ADS  Google Scholar 

  16. H. Cao, T. Alexander, A. Aprahamian, et al., “Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon,” Phys. Rev. D 91, 092007 (2015).

    Article  ADS  Google Scholar 

  17. P. Agnes, J. Dawson, S. de Cecco, et al., “Measurement of the liquid argon energy response to nuclear and electronic recoils,” Phys. Rev. D 97, 112005 (2018).

    Article  ADS  Google Scholar 

  18. U. Fano and W. Lichten, “Interpretation of Ar+–Ar collisions at 50 keV,” Phys. Rev. Lett. 14, 627–629 (1965).

    Article  ADS  Google Scholar 

  19. Yu. N. Demkov and I. V. Komarov, “Ionization in a slow collision of two atoms,” Sov. Phys. JETP 23, 189 (1966).

    ADS  Google Scholar 

  20. R. K. Cacak, Q. C. Kessel, and M. E. Rudd, “Emission of Auger electrons resulting from symmetric argon and neon ion-atom collisions,” Phys. Rev. A 2, 1327–1331 (1970).

    Article  ADS  Google Scholar 

  21. J. D. Garcia, R. J. Fortner, and T. M. Kavanagh, Rev. Mod. Phys. 45, 111–177 (1973).

    Article  ADS  Google Scholar 

  22. U. Wille and R. Hippler, “Mechanisms of inner-shell vacancy production in slow ion-atom collisions,” Phys. Rep. 132, 129–260 (1986).

    Article  ADS  Google Scholar 

  23. E. Everhart and Q. C. Kessel, “Charge-state correlations in Ar+-Ar collisions,” Phys. Rev. Lett. 14, 247–249 (1965).

    Article  ADS  Google Scholar 

  24. Q. C. Kessel, A. Russek, and E. Everhart, “Three discrete Q values in Ar+–Ar collisions,” Phys. Rev. Lett. 14, 484–486 (1965).

    Article  ADS  Google Scholar 

  25. Q. C. Kessel and E. Everhart, “Coincidence measurements of large-angle Ar+-on-Ar collisions,” Phys. Rev. 146, 16–27 (1966).

    Article  ADS  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon, New York, 1988).

  27. E. Everhart, G. Stone, and R. J. Carbone, “Classical calculation of differential cross section for scattering from a coulomb potential with exponential screening,” Phys. Rev. 99, 1287–1290 (1955).

    Article  ADS  Google Scholar 

  28. M. Zitnik, R. Puttner, G. Goldsztejn, et al., “Two-to-one Auger decay of a double L vacancy in argon,” Phys. Rev. A 93, 021401-1–5 (2016).

    Article  ADS  Google Scholar 

  29. V. I. Kalashnikova and M. S. Kozodaev, Elementary Particle Detectors (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  30. E. Gargioni and B. Grosswendt, “Electron scattering from argon: data evaluation and consistency,” Rev. Mod. Phys. 80, 451–480 (2008).

    Article  ADS  Google Scholar 

  31. B. M. Smirnov, “Kinetics of electrons in gases and condensed systems,” Phys. Usp. 45, 1251 (2002).

    Article  ADS  Google Scholar 

  32. R. Hegerberg, T. Stefansson, and M. T. Elford, “Measurement of the symmetric charge-exchange cross section in helium and argon in the impact energy range 1–10 keV,” J. Phys. B: At. Mol. Phys. 11, 133–147 (1978).

    Article  ADS  Google Scholar 

  33. O. B. Firsov, “Qualitative explanation of electronic excitation in atomic collisions,” Sov. Phys. JETP 9, 1076 (1959).

    Google Scholar 

  34. V. B. Shikin, “Mobility of charges in liquid, solid, and dense gaseous helium,” Sov. Phys. Usp. 20, 226 (1977).

    Article  ADS  Google Scholar 

  35. W. T. Sommer, “Liquid helium as a barrier to electrons,” Phys. Rev. Lett. 12, 271–273 (1964).

    Article  ADS  Google Scholar 

  36. M. A. Woolf and G. W. Rayfield, “Energy of negative ions in liquid helium by photoelectric injection,” Phys. Rev. Lett. 15, 235–237 (1965).

    Article  ADS  Google Scholar 

  37. W. D. Johnson, J. R. Broomall, and D. G. Onn, “Electron injection into dense neon: A comparison with hydrogen and helium,” J. Low Temp. Phys. 35, 535–545 (1979).

    Article  ADS  Google Scholar 

Download references

6. ACKNOWLEDGMENTS

We wish to thank M.D. Skorokhvatov for paying attention to the considered problem and interest in this analysis, as well as A.V. Grobov, I.N. Machulin, O.A. Titov, and the participants of D.V. Naumov’s seminar for our helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Men’shikov.

Additional information

Translated by A. Asratyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shikov, L.I., Men’shikov, P.L. & Faifman, M.P. Pauli Ionization Mechanism for Recoil Atoms in Matter. Phys. Part. Nuclei Lett. 18, 665–671 (2021). https://doi.org/10.1134/S1547477121060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121060078

Navigation