Skip to main content
Log in

Thermodynamically Consistent Description of One-Phonon States Fragmentation in Hot Nuclei

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The fragmentation of one-phonon states in hot nuclei is studied. For this purpose, the quasiparticle-phonon nuclear model is extended to a finite temperature by applying the formalism of thermo field dynamics. It is shown that consistent application of the thermal state condition leads to the realization of the detailed balance principle at each stage of the thermal Hamiltonian diagonalization. The equations describing the coupling between thermal one-phonon and two-phonon states are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. di Toro, V. Baran, M. Cabibbo, M. Colonna, A. B. Larionov, and N. Tsoneva, “The nuclear giant dipole resonance under extreme conditions,” Phys. Part. Nucl. 31, 433 (2000).

    Google Scholar 

  2. S. Shlomo and V. M. Kolomietz, “Hot nuclei,” Rep. Prog. Phys. 68, 1–76 (2005).

    Article  ADS  Google Scholar 

  3. K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes in stars,” Rev. Mod. Phys. 75, 819–862 (2003).

    Article  ADS  Google Scholar 

  4. G. Martínez-Pinedo, M. Liebendörfer, and F. Frekers, “Nuclear input for core-collapse models,” Nucl. Phys. A 777, 395–423 (2006).

    Article  ADS  Google Scholar 

  5. K. G. Balasi, K. Langanke, and G. Martínez-Pinedo, “Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis,” Prog. Part. Nucl. Phys. 85, 33–81 (2015).

    Article  ADS  Google Scholar 

  6. P. F. Bortignon et al., “Damping of nuclear excitations at finite temperature,” Nucl. Phys. A 460, 149–163 (1986).

    Article  ADS  Google Scholar 

  7. G. G. Bunatyan, “On the statistical description of the compound states of nuclei,” Sov. J. Nucl. Phys. 26, 518 (1977).

    Google Scholar 

  8. S. P. Kamerdzhiev, “Microscopic description of ‘heated’ nuclei,” Preprint FEI-1860 (Obninsk, 1987).

  9. D. S. Kosov and A. I. Vdovin, “The TFD treatment of the quasiparticle-phonon interaction at finite temperature,” Mod. Phys. Lett. A 9, 1735–1743 (1994).

    Article  ADS  Google Scholar 

  10. A. I. Vdovin and D. S. Kosov, “One-phonon states in heated nuclei,” Phys. At. Nucl. 58, 766 (1995).

    Google Scholar 

  11. V. G. Solov’ev, Nuclear Theory: Quasiparticles and Phonons (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  12. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed Matter (Elsevier, Amsterdam, 1982).

    Google Scholar 

  13. Y. Takahashi and H. Umezawa, “Thermo field dynamics,” Int. J. Mod. Phys. B 10, 1755–1805 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. I. Vdovin and A. A. Dzhioev, “Thermal Bogoliubov transformation in nuclear structure theory,” Phys. Part. Nucl. 41, 1127–1131 (2010).

    Article  Google Scholar 

  15. A. A. Dzhioev and A. I. Vdovin, “On the TFD treatment of collective vibrations in hot nuclei,” Int. J. Mod. Phys. E 18, 1535–1560 (2009).

    Article  ADS  Google Scholar 

  16. E. Litvinova and H. Wibowo, “Finite-temperature relativistic nuclear field theory: An application to the dipole response,” Phys. Rev. Lett. 121, 082501 (2018).

    Article  ADS  Google Scholar 

  17. E. Litvinova and H. Wibowo, “Nuclear response in a finite-temperature relativistic framework,” Eur. Phys. J. A. 55, 223 (2019).

    Article  ADS  Google Scholar 

  18. K. Langanke and G. Martinez-Pinedo, “Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A = 45–65 in supernovae environments,” Nucl. Phys. A 673, 481–508 (2000).

    Article  ADS  Google Scholar 

  19. K. Langanke and G. Martinez-Pinedo, “The role of giant resonances in nuclear astrophysics: An overview,” Eur. Phys. J. A 55, 226 (2019).

    Article  ADS  Google Scholar 

  20. A. A. Dzhioev et al., “Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments,” Phys. Rev. C 81, 015804 (2010).

    Article  ADS  Google Scholar 

  21. A. A. Dzhioev et al., “Inelastic neutrino scattering off hot nuclei in supernova environments,” Phys. Rev. C 89, 035805 (2014).

    Article  ADS  Google Scholar 

  22. A. A. Dzhioev et al., “Thermal quasiparticle random-phase approximation with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions,” Phys. Rev. C 94, 015805 (2016).

    Article  ADS  Google Scholar 

  23. A. A. Dzhioev, A. I. Vdovin, and Ch. Stoyanov, “Thermal quasiparticle random-phase approximation calculations of stellar electron capture rates with the Skyrme effective interaction,” Phys. Rev. C 100, 025801 (2019).

    Article  ADS  Google Scholar 

  24. N. Paar et al., “Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals,” Phys. Rev. C 80, 055801 (2009).

    Article  ADS  Google Scholar 

  25. Y. F. Niu et al., “Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation,” Phys. Rev. C 83, 45807 (2011).

    Article  ADS  Google Scholar 

  26. A. F. Fantina et al., “Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional,” Phys. Rev. C 86, 035805 (2012).

    Article  ADS  Google Scholar 

  27. A. A. Dzhioev, A. I. Vdovin, and Ch. Stoyanov, “The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment,” Phys. At. Nucl. 79, 1019–1029 (2016).

    Article  Google Scholar 

  28. V. V. Voronov and V. G. Solov’ev, “Quasiparticle-phonon model of the nucleus. IV. Fragmentation of one-phonon and two-quasiparticle states in spherical nuclei,” Sov. J. Part. Nucl. 14, 583 (1983).

    Google Scholar 

  29. M. Schmutz, “Real-time Green’s functions in many body problems,” Z. Phys. B 30, 97–106 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. A. Dzhioev and D. S. Kosov, “Nonequilibrium perturbation theory in Liouville-Fock space for inelastic electron transport,” J. Phys.: Condens. Matter 24, 225304 (2012).

    ADS  Google Scholar 

  31. A. A. Dzhioev and D. S. Kosov, “Nonequilibrium configuration interaction method for transport in correlated quantum systems,” J. Phys. A: Math. Theor. 47, 095002 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  32. I. Ojima, “Gauge fields at finite temperatures—‘Thermo field dynamics’ and the KMS condition and their extension to Gauge theories,” Ann. Phys. 137, 1–32 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  33. D. J. Rowe, Nuclear Collective Motion: Models and Theory (Word Scientific, Singapore, 2010).

    Book  Google Scholar 

  34. J. Suhonen, From Nucleons to Nucleus (Springer, Berlin, 2007).

    Book  Google Scholar 

  35. M. Brack and P. Quentin, “Selfconsistent calculations of highly excited nuclei,” Phys. Lett. B 52, 159–162 (1974).

    Article  ADS  Google Scholar 

  36. P. Bonche, S. Levit, and D. Vautherin, “Properties of highly excited nuclei,” Nucl. Phys. A 427, 278–296 (1984).

    Article  ADS  Google Scholar 

  37. A. L. Goodman, “Finite-temperature HFB theory,” Nucl. Phys. A 352, 30–44 (1981).

    Article  ADS  Google Scholar 

  38. O. Civitarese, G. G. Dussel, and R. P. J. Perazzo, “Thermal aspects of the pairing correlations in finite nuclei,” Nucl. Phys. A 404, 15–28 (1983).

    Article  ADS  Google Scholar 

  39. O. Civitarese and A. L. de Paoli, “Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature,” Z. Phys. A 344, 243–249 (1992).

    Article  ADS  Google Scholar 

  40. G. G. Dussel et al., “Temperature dependent resonant random phase approximation,” Phys. Rev. C 46, 558–564 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dzhioev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhioev, A.A., Vdovin, A.I. Thermodynamically Consistent Description of One-Phonon States Fragmentation in Hot Nuclei. Phys. Part. Nuclei Lett. 18, 629–639 (2021). https://doi.org/10.1134/S1547477121060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121060054

Navigation