Skip to main content

On Matter and Pressure Distribution in Nucleons


Matter and pressure distribution in hadrons are studied in a dual analytic model of generalized parton distributions with complex Regge trajectories. An original parametrization of the pressure distribution in the nucleon is proposed, ensuring its stability and compatible with the experimental data from the JLab accelerator.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    D. Müller et al., “Wave functions, evolution equations and evolution kernels from light ray operators of QCD,” Fortsch. Phys. 42, 101–141 (1994).

    ADS  Article  Google Scholar 

  2. 2

    A. V. Radyushkin, “Nonforward parton distributions,” Phys. Rev. D: Part. Fields 56, 5524–5557 (1997).

    ADS  Article  Google Scholar 

  3. 3

    X. D. Ji, “Off-forward parton distributions,” J. Phys. G 24, 1181–1205 (1988).

    ADS  Article  Google Scholar 

  4. 4

    V. D. Burkert, L. Elouadrhiri, and F. X. Girod, “The pressure distribution inside the proton,” Nature (London, U.K.) 557, 396–399 (2018).

    ADS  Article  Google Scholar 

  5. 5

    L. L. Jenkovszky, “Duality, analyticity and T dependence of generalized parton distributions,” Phys. Rev. D: Part. Fields 74, 114026 (2006).

    ADS  Article  Google Scholar 

  6. 6

    R. Fiore, L. L. Jenkovszky, and V. K. Magas, “Generalized parton distributions, analyticity and crossing,” Nucl. Phys. B Proc. Suppl. 146, 146–150 (2005).

    ADS  Article  Google Scholar 

  7. 7

    O. V. Teryaev, “Spin structure of nucleon and equivalence principle,” arXiv: 9904376 [hep-ph] (1999).

  8. 8

    H. Pagels, “Energy-momentum structure form factors of particles,” Phys. Rev. 144, 1250–1260 (1996).

    ADS  Article  Google Scholar 

  9. 9

    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, Chichester, 1972).

    Google Scholar 

  10. 10

    M. D. Landau and M. E. Lifshits, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon, New York, 1986).

  11. 11

    Y. V. Chugreev, “The energy-momentum tensor in the relativistic theory of gravitation,” Phys. Part. Nucl. Lett. 8, 467–475 (2018).

    Google Scholar 

  12. 12

    I. Szanyi et al., “Pomeron/glueball and odderon/oddball trajectories,” Nucl. Phys. A 998, 121728 (2020).

    Article  Google Scholar 

  13. 13

    A. A. Vorobyev, “Precision measurements of the proton charge in electron-proton scattering,” Phys. Part. Nucl. Lett. 16, 390–391 (2019).

    Article  Google Scholar 

  14. 14

    O. V. Selyugin, “Electromagnetic and gravitomagnetic structure and radii of nucleons,” EPJ Web of Conf. 222, 03018 (2019).

  15. 15

    T. T. Chou and C. N. Yang, “Model of elastic high-energy scattering,” Phys. Rev. 170, 1591 (1968).

    ADS  Article  Google Scholar 

  16. 16

    A. N. Wall, L. L. Jenkovszky, and B. V. Struminsky, “High energy hadron interactions,” Sov. J. Part. Nucl. 19, 77 (1988).

    Google Scholar 

  17. 17

    L. L. Jenkovszky, R. Schicker, and I. Szanyi, “Elastic and diffractive scattering in the LHC era,” IJMPE 27, 1830005 (2018).

    ADS  Article  Google Scholar 

  18. 18

    G. Chachamis and A. S. Vera, “Reggeon webs, spin chains and the odderon,” arXiv: 1810.06690 [hep-ph] (2018).

  19. 19

    G. Cohen-Tannoudji, V. V. Ilyin, and L. L. Jenkovsky, “Model for the pomeron trajectory,” Lett. Nuovo Cim. 5, 957–962 (1972).

    Article  Google Scholar 

  20. 20

    K. Kumerički and D. Müller, “Description and interpretation of DVCS measurements,” arXiv: 1512.09014 [hep-ph] (2016).

  21. 21

    A. Watanabe, “DIS at small X and hadron-hadron scattering at high energies via the holographic pomeron exchange,” arXiv: 1810.07474 [hep-ph] (2018).

  22. 22

    S. D. Drell and T. M. Yan, “Connection of elastic electromagnetic nucleon form factors at large Q2 and deep inelastic structure functions near threshold,” Phys. Rev. Lett. 24, 181 (1979).

    ADS  Article  Google Scholar 

  23. 23

    G. B. West, “Phenomenological model for the electromagnetic structure of the proton,” Phys. Rev. Lett. 24, 1206 (1970).

    ADS  Article  Google Scholar 

  24. 24

    M. V. Polyakov, “Generalized parton distributions and strong forces inside nucleons and nuclei,” Phys. Lett. B 555, 57–62 (2003).

    ADS  Article  Google Scholar 

  25. 25

    M. V. Polyakov and P. Schweitzer, “Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that,” Int. J. Mod. Phys. A 33, 1830025 (2018).

    ADS  Article  Google Scholar 

  26. 26

    O. V. Teryaev, “Spin structure of nucleon in QCD: inclusive and exclusive processes,” in New Trends in High-Energy Physics, Proceedings of the 2001 Crimean Conference, Ed. by P. N. Bogolubov et al. (Kiev, 2001), p. 256.

  27. 27

    F. X. Girod et al. (CLAS Collab.), “Deeply virtual Compton scattering beam-spin asymmetries,” Phys. Rev. Lett. 100, 162002 (2008).

    ADS  Article  Google Scholar 

  28. 28

    F. X. Girod et al. (CLAS Collab.), “Cross sections for the exclusive photon electroproduction on the proton and generalized parton distributions,” Phys. Rev. Lett. 115, 212003 (2015).

    ADS  Article  Google Scholar 

  29. 29

    F. X. Girod et al. (CLAS Collab.), “Deeply virtual Compton scattering with, CLAS12 at 6.6 GeV and 8.8 GeV,” Proposal E12-16-010B (Jefferson Lab PAC44, 2016).

  30. 30

    M. von Laue, Ann. Phys. 35, 541 (1911).

    Google Scholar 

Download references


We thank Oleg Selyugin, Oleg Teryaev and Alessaandro Papa for useful discussions as well as Alexander Korchin for his critical remarks.

L.J. was supported by grant no. 0121U109612 “Particle and collective excitation dynamics”.

Author information



Corresponding authors

Correspondence to R. Fiore, L. Jenkovszky or M. Oleksiienko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiore, R., Jenkovszky, L. & Oleksiienko, M. On Matter and Pressure Distribution in Nucleons. Phys. Part. Nuclei Lett. 18, 540–547 (2021).

Download citation


  • quarks
  • partons
  • gluons
  • hadrons
  • Regge trajectories
  • form factors
  • pressure