Skip to main content

Studying the Population of 178m,177Ta in (γ, xn) Reactions


The weighted average yields for 177,178mTa in (γ, xn) reactions have been measured for the first time at the 20, 40, and 55 MeV boundary energies of bremsstrahlung γ-quanta. Simulation results using the TALYS-1.9 program code demonstrate the dominance of statistical processes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Yu. P. Gangrsky and V. M. Mazur, “Scattering of rays from nuclei and excitation of isomeric states,” Phys. Part. Nucl. 33, 80 (2002).

    Google Scholar 

  2. 2

    S. S. Ditrich and B. L. Berman, “Atlas of photoneutron cross sections obtained with monoenergetic photons,” At. Data Nucl. Data Tables 38, 199–338 (1988).

    ADS  Article  Google Scholar 

  3. 3

    R. Bergére, H. Beil, and A. Veyssiére, “Photoneutron cross sections of La, Tb, Ho and Ta,” Nucl. Phys. A 121, 463–480 (1968).

    ADS  Article  Google Scholar 

  4. 4

    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, N. N. Peskov, and M. E. Stepanov, Phys. At. Nucl. 76, 1403 (2013).

    Article  Google Scholar 

  5. 5

    N. V. Strilchuk, The WinSpectrum Manual (2000).

  6. 6

    S. Agostinelli et al. (Geant4 Collab.), “Geant4-a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

    Google Scholar 

  7. 7

    J. F. Briesmeister, “MCNP-A general Monte Carlo N‑particle transport code,” Los Alamos National Laboratory Report LA-12625-M (1997).

  8. 8

    R. B. Firestone, Table of Isotopes, 8th ed. (Wiley-Interscience, New York, 1996).

    Google Scholar 

  9. 9

    A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections,” Can. J. Phys. 43, 1446 (1965).

    ADS  Article  Google Scholar 

  10. 10

    W. Dilg, W. Schantl, H. Vonach, and M. Uhl, “Level density parameters for the back-shifted Fermi gas model in the mass range 40 < A < 250,” Nucl. Phys. A 217, 269–298 (1973).

    ADS  Article  Google Scholar 

  11. 11

    A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane, “Density of discrete levels in 116Sn,” Phys. Rev. C 47, 1504 (1993).

    ADS  Article  Google Scholar 

  12. 12

    S. Goriely, F. Tondeur, and J. M. Pearson, “A Hartree-Fock nuclear mass table,” At. Data Nucl. Data Tables 77, 311–381 (2001).

    ADS  Article  Google Scholar 

  13. 13

    S. Goriely, S. Hilaire, and A. J. Koning, “Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method,” Phys. Rev. C 78, 064307 (2008).

    ADS  Article  Google Scholar 

  14. 14

    S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, “Temperature-dependent combinatorial level densities with the D1M Gogny force,” Phys. Rev. C 86, 064317 (2012).

    ADS  Article  Google Scholar 

  15. 15

    A. J. Koning, S. Hilaire, and M. C. Duijvestijn, “TALYS: Comprehensive nuclear reaction modeling,” AIP Conf. Proc. 769, 1154–1159 (2005).

    ADS  Article  Google Scholar 

  16. 16

    V. A. Zheltonozhsky and A. M. Savrasov, “Excitation of 179Hfm2 with (γ,n)-reaction,” Nucl. Instrum. Methods Phys. Res., Sect. B 456, 116–119 (2019).

    Google Scholar 

Download references


We would like to express our gratitude to S.S. Belyshev from the Scientific Research Institute of Nuclear Physics, Moscow State University, for help in irradiating the samples with a split microtron.


The reported study was funded by RFBR and BRFBR, project number 20-57-00009.

Author information



Corresponding author

Correspondence to M. V. Zheltonozhskaya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheltonozhsky, V.A., Zheltonozhskaya, M.V., Savrasov, A.V. et al. Studying the Population of 178m,177Ta in (γ, xn) Reactions. Phys. Part. Nuclei Lett. 18, 315–318 (2021).

Download citation


  • cross sections
  • activation method
  • gamma spectrometry
  • xn) reactions
  • tantalum-178
  • code TALYS-1.9