Skip to main content

On Optimization of the Metal Ion Production by Electron Cyclotron Resonance Ion Sources

Abstract

The three-dimensional NAM-ECRIS model is applied for studying the metal ion production in the DECRIS-PM Electron Cyclotron Resonance Ion Source. Experimentally measured extracted ion currents are accurately reproduced with the model. Parameters of the injection of metal vapors into the source are optimized. It is found that the axial injection of the highly directional fluxes allows increasing the extracted ion currents of the highly charged calcium ions by factor of 1.5. The reason for the gain in the currents is formation of internal barrier for the ions inside the plasma, which increase the ion extraction and production efficiency. Benefits of injecting the singly-charged calcium ions instead of atoms are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    A. Efremov, S. Bogomolov, and V. Mironov, “The role of ion sources in synthesis of the super-heavy elements,” Rev. Sci. Instrum. 91, 013314 (2020). https://doi.org/10.1063/1.5128172

    ADS  Article  Google Scholar 

  2. 2

    R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasma (Inst. of Phys. Publ., Bristol, 1996).

    Google Scholar 

  3. 3

    H. Koivisto, J. Ärje, and M. Nurmia, “Metal ion beams from an ECR ion source using volatile Compounds,” Nucl. Instrum. Methods Phys. Res., Sect. B 94, 291 (1994). https://doi.org/10.1016/0168-583X(94)95368-6

    Article  Google Scholar 

  4. 4

    S. L. Bogomolov, A. A. Efremov, K. I. Kuzmenkov, D. K. Pugachev, Yu. Yazvitsky, J. L. Conradie, D. T. Fourie, N. Y. Kheswa, J. Mira, F. Nemulodi, and R. W. Thomae, “Research on metallic ion beam production with electron cyclotron resonance ion sources,” in Proceedings of the 22nd International Conference on Cyclotrons and their Applications, Cape Town, South Africa, September 23–27, 2019. https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP017

  5. 5

    Y. Higurashi, M. Fujimaki, H. Haba, O. Kamigaito, M. Kidera, M. Komiyama, J. Ohnishi, K. Ozeki, T. Aihara, M. Tamura, and A. Uchiyama, “Recent RIKEN 28 GHz SC-ECRIS results,” in Proceedings of the 20th International Workshop on ECR Ion Sources ECRIS2012, Sydney, Australia, September 25–28, 2012. http://accelconf.web.cern.ch/ECRIS2012/papers/ thxo03.pdf.

  6. 6

    S. L. Bogomolov, A. E. Bondarchenko, A. A. Efremov, K. I. Kuzmenkov, A. N. Lebedev, V. E. Mironov, V. N. Loginov, N. Yu. Yazvitsky, and N. N. Konev, “Production of high-intensity ion beams from the DECRIS-PM-14 ECR ion source,” Phys. Part. Nucl. Lett. 15, 878–881 (2018). https://doi.org/10.1134/S1547477118070191

    Article  Google Scholar 

  7. 7

    V. Mironov, S. Bogomolov, A. Bondarchenko, A. Efremov, V. Loginov, and D. Pugachev, “Three-dimensional modelling of processes in electron cyclotron resonance ion source,” J. Instrum. (in press); arXiv: 2008.08929 [physics.acc-ph]

  8. 8

    V. B. Kutner, S. L. Bogomolov, A. A. Efremov, A. N. Lebedev, V. Ya. Lebedev, V. N. Loginov, A. B. Yakushev, and N. Yu. Yazvitsky, “Production of intense 48Ca ion beam at the U-400 cyclotron,” Rev. Sci. Instrum. 71, 860 (2000). https://doi.org/10.1063/1.1150313

    ADS  Article  Google Scholar 

  9. 9

    F. O. Goodman, “Thermal accommodation coefficients,” J. Phys. Chem. 84, 1431 (1980). https://doi.org/10.1021/j100449a002

    Article  Google Scholar 

  10. 10

    W. M. Trott, J. N. Castañeda, J. R. Torczynski, M. A. Gallis, and D. J. Rader, “An experimental assembly for precise measurement of thermal accommodation coefficients,” Rev. Sci. Instrum. 82, 035120 (2011). https://doi.org/10.1063/1.3571269

    ADS  Article  Google Scholar 

  11. 11

    A. Burgess and M. C. Chidichimo, “Electron impact ionization of complex ions,” Mon. Not. R. Astron. Soc. 203, 1269 (1983). https://doi.org/10.1093/mnras/203.4.1269

    ADS  Article  Google Scholar 

  12. 12

    H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Dens. Phys. 1, 3 (2005). https://doi.org/10.1016/j.hedp.2005.07.001

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research under grant no. 20-52-53026/20.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Mironov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mironov, V., Bogomolov, S., Bondarchenko, A. et al. On Optimization of the Metal Ion Production by Electron Cyclotron Resonance Ion Sources. Phys. Part. Nuclei Lett. 18, 370–377 (2021). https://doi.org/10.1134/S1547477121030092

Download citation