Skip to main content
Log in

Decay Properties of Superheavy Nuclei 269–290Fl

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A systematic study of alpha and cluster decay of superheavy element with Z = 114 in the mass number range 269 < A < 339 is presented using the models such as coulomb and proximity potential model (CPPM), generalized liquid drop model (GLDM) and temperature dependent dynamical cluster model (DCM). The possible isotopes of superheavy element with Z = 114 are predicted by comparing alpha and cluster decay half-lives with that of spontaneous fission. In the present study, investigations on 284–289Fl reveals that the studied half-lives were found to be good agreement with available experimental values. This study identifies that the nuclei 274–289Fl are having alpha decay half-lives of the order of 10–6 to 10–1 s and these superheavy nuclei can be detected if synthesized in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999).

    Article  ADS  Google Scholar 

  2. Y. Oganessian et al., Phys. Rev. C 63, 011301 (2000).

    Article  ADS  Google Scholar 

  3. K. Morita et al., J. Phys. Soc. Jpn. 73, 2593–2596 (2004).

    Article  ADS  Google Scholar 

  4. Y. Oganessian et al., Phys. Rev. C 69, 021601 (2004).

    Article  ADS  Google Scholar 

  5. Y. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010).

    Article  ADS  Google Scholar 

  6. Y. Oganessian et al., Phys. Rev. C 74, 044602 (2006).

    Article  ADS  Google Scholar 

  7. Yu. Ts. Oganessian et al., Nature (London, U.K.) 400, 242 (1999).

    Article  ADS  Google Scholar 

  8. D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 85, 034615 (2012).

    Article  ADS  Google Scholar 

  9. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Phys. Rev. Lett. 107, 062503 (2011).

    Article  ADS  Google Scholar 

  10. A. Sobiczewski, Radiochim. Acta 99, 395 (2011).

    Article  Google Scholar 

  11. B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 2247 (1992).

    Article  ADS  Google Scholar 

  12. D. N. Basu, Phys. Lett. B 566, 90 (2003).

    Article  ADS  Google Scholar 

  13. P. R. Chowdhury, D. N. Basu, and C. Samanta, Phys. Rev. C 75, 047306 (2007).

    Article  ADS  Google Scholar 

  14. H. F. Zhang, W. Zuo, J. Q. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).

    Article  ADS  Google Scholar 

  15. H. F. Zhang and G. Royer, Phys. Rev. C 76, 047304 (2007).

    Article  ADS  Google Scholar 

  16. M. M. Sharma, A. R. Farhan, and G. Munzenberg, Phys. Rev. C 71, 054310 (2005).

    Article  ADS  Google Scholar 

  17. J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, Phys. Rev. C 76, 044326 (2007).

    Article  ADS  Google Scholar 

  18. C. Xu, Z. Ren, and Y. Q. Guo, Phys. Rev. C 78, 044329 (2008).

    Article  ADS  Google Scholar 

  19. H. Zhang, W. Zuo, J. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).

    Article  ADS  Google Scholar 

  20. H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650074–85 (2016).

    Article  ADS  Google Scholar 

  21. H. C. Manjunatha, Nucl. Phys. A 945, 42–57 (2016).

    Article  ADS  Google Scholar 

  22. H. C. Manjunatha, N. Sowmya, K. N. Sridhar, and L. Seenappa, J. Radioanal. Nucl. Chem. 314, 991–999 (2017).

    Article  Google Scholar 

  23. H. C. Manjunatha and N. Sowmya, Nucl. Phys. A 969, 68–82 (2018).

    Article  ADS  Google Scholar 

  24. H. C. Manjunatha and N. Sowmya, Int. J. Mod. Phys. E 27, 1850041-1–17 (2018).

  25. H. C. Manjunatha, K. N. Sridhar, and N. Sowmya, Phys. Rev. C 98, 024308 (2018).

    Article  ADS  Google Scholar 

  26. N. Sowmya and H. C. Manjunatha, Bulg. J. Phys. 46, 16–27 (2019).

    Google Scholar 

  27. H. C. Manjunatha, Nucl. Phys. A 945, 42–57 (2016).

    Article  ADS  Google Scholar 

  28. H. C. Manjunatha, K. N. Sridhar, and N. Sowmya, Nucl. Phys. A 987, 382–395 (2019).

    Article  ADS  Google Scholar 

  29. N. Sowmya and H. C. Manjunatha, in Proceedings of the 63rd DAE Symposium on Nuclear Physics, 2018, pp. 200–201.

  30. N. Sowmya and H. C. Manjunatha, Braz. J. Phys. 49, 874 (2019).

    Article  ADS  Google Scholar 

  31. G. R. Sridhar, H. C. Manjunatha, N. Sowmya, P. S. D. Gupta, and H. B. Ramalingam, Eur. Phys. J. Plus 135, 1–28 (2020).

    Article  Google Scholar 

  32. M. G. Srinivas, H. C. Manjunatha, K. N. Sridhar, N. Sowmya, and A. C. Raj, Nucl. Phys. A 995, 1216 (2020).

    Article  Google Scholar 

  33. N. Sowmya, H. C. Manjunatha, N. Dhananjaya, and A. M. Nagaraja, J. Radioanal. Nucl. Chem. 323, 1347–1351 (2020).

    Article  Google Scholar 

  34. N. Sowmya and H. C. Manjunatha, Phys. Part. Nucl. Lett. 17, 370–378 (2020).

    Article  Google Scholar 

  35. G. Royer and B. Remaud, Nucl. Phys. A 444, 477 (1985).

    Article  ADS  Google Scholar 

  36. G. Royer and K. Zbiri, Nucl. Phys. A 697, 479 (2002).

    Article  ADS  Google Scholar 

  37. G. Royer and R. Moustabchir, Nucl. Phys. A 683, 182 (2001).

    Article  ADS  Google Scholar 

  38. G. Royer, J. Phys. G 26, 1149 (2000).

    Article  ADS  Google Scholar 

  39. G. Royer, K. Zbiri, and C. Bonilla, Nucl. Phys. A 730, 355 (2004).

    Article  ADS  Google Scholar 

  40. P. A. Seeger, Nucl. Phys. 25, 1 (1961).

    Article  Google Scholar 

  41. G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149–1170 (2000).

    Article  ADS  Google Scholar 

  42. G. Royer and B. Remaud, J. Phys. G 10, 1057 (1984).

    Article  ADS  Google Scholar 

  43. G. Royer, in Heavy Elements and Related New Phenomena, Ed. by R. K. Gupta and W. Greiner (World Scientific, Singapore, 1999), p. 591.

    Google Scholar 

  44. G. Royer and B. Remaud, Nucl. Phys. A 444, 477 (1985).

    Article  ADS  Google Scholar 

  45. G. Royer, C. Normand, and E. Druet, Nucl. Phys. A 634, 267 (1998).

    Article  ADS  Google Scholar 

  46. H. Zhang, W. Zuo, J. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).

    Article  ADS  Google Scholar 

  47. H. Feldmeier, in Proceedings of the 12th Summer School on Nuclear Physics, Mikolajki, Poland, 1979.

  48. R. Moustabchir and G. Royer, Nucl. Phys. A 683, 266 (2001).

    Article  ADS  Google Scholar 

  49. J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974).

    Article  ADS  Google Scholar 

  50. R. K. Gupta, W. Scheid, and W. Greiner, Phys. Rev. Lett. 35, 353 (1975).

    Article  ADS  Google Scholar 

  51. A. Bohr and B. R. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998), Vol. 1.

    Book  MATH  Google Scholar 

  52. J. P. J. Lestone, Phys. Rev. C 52, 1118 (1995).

    Article  ADS  Google Scholar 

  53. F. Ghorbani, S. A. Alavi, and V. Dehghani, Nucl. Phys. A 1002, 121947 (2020).

    Article  Google Scholar 

  54. C. Karthikraj, N. S. Rajeswari, and M. Balasubramaniam, Phys. Rev. C 86, 014613 (2012).

    Article  ADS  Google Scholar 

  55. R. K. Gupta, R. Kumar, N. K. Dhiman, M. Balasubramaniam, et al., Phys. Rev. C 68, 014610 (2003).

    Article  ADS  Google Scholar 

  56. R. K Gupta, M. Balasubramaniam, et al., J. Phys. G: Nucl. Part. Phys. 32, 345–361 (2006).

    Article  ADS  Google Scholar 

  57. J. Blocki, J. Randrup, W. J. Swaiatecki, and C. F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).

    Article  ADS  Google Scholar 

  58. https://www-nds.iaea.org/RIPL-3.

  59. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).

    ADS  Google Scholar 

  60. H. C. Manjunatha, B. M. Chandrika, and L. Seenappa, Mod. Phys. Lett. A 31, 1650162 (2016).

    Article  ADS  Google Scholar 

  61. M. Wang, G. Audi, A. H. Wapstra, et al., Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  62. H. C. Manjunatha and N. Sowmya, Mod. Phys. Lett. A 34, 1950112 (2019).

    Article  ADS  Google Scholar 

  63. S. Z. Qiang, S. L. Ping, M. Ying, H. J. Gang, et al., Chin. Phys. C 38, 124101 (2014).

    Article  ADS  Google Scholar 

  64. X. P. Zhang, Z. Z. Ren, Q. J. Zhi, et al., J. Phys. G: Nucl. Part. Phys. 34, 2611 (2007).

    Article  ADS  Google Scholar 

  65. C. Xu, Z. Ren, Phys. Rev. C 71, 014309 (2005).

    Article  ADS  Google Scholar 

  66. H. Zhang, W. Zuo, J. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowmya, N., Manjunatha, H.C. & Damodara gupta, P.S. Decay Properties of Superheavy Nuclei 269–290Fl. Phys. Part. Nuclei Lett. 18, 177–184 (2021). https://doi.org/10.1134/S1547477121020199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121020199

Navigation