NICA-MPD Vertex Tracking Detector Identification Capability for Reconstructing Strange and Charmed Particle Decays


The vertex silicon detector is part of the NICA-MPD tracking system designed for efficient registration of short-lived products of nucleus–nucleus interactions. This paper presents the results of a computer simulation of the identification capability of the MPD tracking system which includes a Time-Projection Chamber (TPC) and a vertex detector based on Monolithic Active Pixel Sensors (MAPS’s) when reconstructing the decays of strange and charmed particles generated in central Au + Au collisions at \(\sqrt {{{S}_{{NN}}}} \) = 9 GeV.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.


  1. 1

    B. Mueller, “Hadronic signals of deconfinement at RHIC,” Nucl. Phys. A 750, 84–97 (2005).

    ADS  Article  Google Scholar 

  2. 2

    G. D. Moore and D. Teaney, “How much do heavy quarks thermalize in a heavy ion collision?,” Phys. Rev. C 71, 064904 (2005).

    ADS  Article  Google Scholar 

  3. 3

    H. Hees and R. Rapp, “Thermalization of heavy quarks in the quark-gluon plasma,” Phys. Rev. C 71, 034907 (2005).

    ADS  Article  Google Scholar 

  4. 4

    J. Uphoff, O. Fochler, Z. Xu, and C. Greiner, “Heavy-quark production in ultrarelativistic heavy-ion collisions within a partonic transport model,” Phys. Rev. C 82, 044906 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Kh. U. Abraamyana et al., “The MPD detector at the NICA heavy-ion collider at JINR,” Nucl. Instrum. Methods Phys. Res., Sect. A 628, 99–102 (2011).

    Google Scholar 

  6. 6

    B. Abelev et al., “Technical design report for the upgrade of the ALICE inner tracking system,” J. Phys. G: Nucl. Part. Phys. 41, 08700 (2014)

    Google Scholar 

  7. 7

    MpdRoot Software.

  8. 8

    R. Fruehwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl. Instrum. Methods Phys. Res., Sect. A 262, 444–450 (1987).

    Google Scholar 

  9. 9

    S. G. Mashnik and A. J. Sierk, “User manual for the code LAQGSM,” Report LA-UR-01-6804 (Los Alamos Natl. Labor., Los Alamos, 2001).

  10. 10

    P. Billoir, “Track fitting with multiple scattering: A new method,” Nucl. Instrum. Methods Phys. Res., Sect. A 225, 352–366 (1984).

    Google Scholar 

  11. 11

    A. N. Tawfik and E. Abbas, “Thermal description of particle production in Au–Au collisions at RHIC Energies (STAR),” Phys. Part. Nucl. Lett. 12, 521 (2015).

    Article  Google Scholar 

  12. 12

    C. Blume, “Energy dependence of hadronic observables,” J. Phys. G: Nucl. Part. Phys. 31, S57–S68 (2005)

    ADS  Article  Google Scholar 

  13. 13

    W. Cassing, E. L. Bratkovskaya, and A. Sibirtsev, “Open charm production in relativistic nucleus-nucleus collisions,” Nucl. Phys. A 691, 753–778 (2001).

    ADS  Article  Google Scholar 

  14. 14

    A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, “TMVA4 – toolkit for multivariate data analysis with ROOT,” arXiv: physics/0703039v5 [] (2009).

  15. 15

    V. D. Kekelidze, “NICA project at JINR: Status and prospects,” J. Instrum. 12, C06012 (2017).

    Article  Google Scholar 

Download references


This paper was supported by the Russian Foundation for Basic Research, project no. 18-02-40119.

Author information



Corresponding author

Correspondence to V. P. Kondratiev.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, A.I., Igolkin, S.N., Kondratiev, V.P. et al. NICA-MPD Vertex Tracking Detector Identification Capability for Reconstructing Strange and Charmed Particle Decays. Phys. Part. Nuclei Lett. 17, 856–870 (2020).

Download citation