Meteorological Characteristics of Energetic Atmospheric Phenomena

Abstract

Thunderclouds act as the sources of energetic radiation, the main components of which are gamma particles and electrons. The radiation can be registered by satellite or ground-based detectors. The effect is caused by the bremsstrahlung of electrons accelerated by the cloud electric field. The study of high-energy atmospheric phenomena requires analyzing the data on the distribution of cloud particles and the electrical structure formed by them. In this study, the comparison of the information on meteorological conditions for energetic emission from thunderclouds obtained from satellite observations in the infrared and optical ranges is performed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    J. R. Dwyer, D. M. Smith, and S. A. Cummer, “High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena,” J. Space Sci. Rev. 173, 133–196 (2012).

    ADS  Article  Google Scholar 

  2. 2

    A. Chilingarian, “Thunderstorm ground enhancements - model and relation to lightning flashes,” J. Atmos. Solar-Terr. Phys. 107, 68–76 (2013).

    ADS  Article  Google Scholar 

  3. 3

    G. J. Fishman et al., “Discovery of intense gamma-ray flashes of atmospheric origin,” Science (Washington, DC, U. S.) 264 (5163) 1313–1316 (1994).

    ADS  Article  Google Scholar 

  4. 4

    A. Chilingarian, A. Avetisyan, G. Hovsepyan, T. Karapetyan, L. Kozliner, B. Sargsyan, and M. Zazyan, “Origin of the low-energy gamma ray flux of the long-lasting thunderstorm ground enhancements,” Phys. Rev. D 99, 102002 (2019).

    ADS  Article  Google Scholar 

  5. 5

    P. Klimov et al., “Remote sensing of the atmosphere by the ultraviolet detector TUS onboard the Lomonosov satellite,” Remote Sens. 11, 2449 (2019).

    ADS  Article  Google Scholar 

  6. 6

    S. V. Biktemerova et al., “First results of the Lomonosov TUS and GRB experiments,” in Proceedings of the 25th European Cosmic Ray Symposium, Turin,2016.

  7. 7

    C. T. R. Wilson, “The acceleration of beta-particles in strong electric fields such as those of thunderclouds,” Proc. Cambridge Phil. Soc. 22, 534–538 (1925).

    ADS  Article  Google Scholar 

  8. 8

    A. V. Gurevich and K. P. Zybin, “Runaway breakdown and electric discharges in thunderstorms,” Phys. Usp. 44, 1119–1140 (2001).

    ADS  Article  Google Scholar 

  9. 9

    A. V. Gurevich, G. M. Milikh, and R. A. Roussel-Dupre, “Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm,” Phys. Lett. A 165, 463–468 (1992).

    ADS  Article  Google Scholar 

  10. 10

    S. Eidelman et al., “Review of particle physics,” Phys. Lett. B 592, 1–1109 (2004).

    ADS  Article  Google Scholar 

  11. 11

    A. V. Gurevich, K. P. Zybin, and R. A. Roussel-Dupre, “Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers,” Phys. Lett. A 254, 79–87 (1999).

    ADS  Article  Google Scholar 

  12. 12

    V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, U.K., 2003).

    Google Scholar 

  13. 13

    M. Stolzenburg and T. C. Marshall, “Charge structure and dynamics in thunderstorms,” Space Sci. Rev. 137, 355–372 (2008).

    ADS  Article  Google Scholar 

  14. 14

    D. M. Smith, B. J. Hazelton, B. W. Grefenstette, J. R. Dwyer, R. H. Holzworth, and E. H. Lay, “Terrestrial gamma ray flashes correlated to storm phase and tropopause height,” J. Geophys. Res. 115, A00E49 (2010).

    ADS  Google Scholar 

  15. 15

    http://wwlln.net/.

  16. 16

    S. Mallick, V. A. Rakov, T. Ngin, et al., “Evaluation of the WWLLN performance characteristics using rocket-triggered lightning data,” in Proceedings of the Green Electronics Conference ICGE and 6th International Conference on Low Power Electronics ICLPE, Manaus, Brazil, May,2014.

  17. 17

    E. H. Lay, R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto, and R. L. Dowden, “WWLL global lightning detection system: Regional validation study in Brazil,” Geophys. Res. Lett. 31, L03102 (2004).

    ADS  Google Scholar 

  18. 18

    M. E. Splitt, S. M. Lazarus, D. Barnes, J. R. Dwyer, H. K. Rassoul, D. M. Smith, B. Hazelton, and B. Grefenstette, “Thunderstorm characteristics associated with RHESSI identified terrestrial gamma ray flashes,” J. Geophys. Res. 115, A00E38 (2010).

    ADS  Google Scholar 

  19. 19

    A. Tiberia, S. Dietrich, F. Porc?gu, M. Marisaldi, A. Ursi, and M. Tavani, “Gamma ray storms: Preliminary meteorological analysis of AGILE TGFs. Meteorology of AGILE TGF observations,” Rend. Lincei, Sci. Fis. Nat. (2019).

  20. 20

    D. E. Barnes, M. E. Splitt, J. R. Dwyer, S. Lazarus, D. M. Smith, and H. K. Rassoul, “A study of thunderstorm microphysical properties and lightning flash counts associated with terrestrial gamma-ray flashes,” J. Geophys. Res. Atmos. 120, 3453–3464 (2014).

    ADS  Article  Google Scholar 

  21. 21

    T. Chronis, M. Briggs, G. Priftis, V. Connaughton, J. Brundell, R. Holzworth, S. Heckman, S. McBreen, G. Fitzpatrick, and M. Stanbro, “Characteristics of thunderstorms that produce terrestrial gamma-ray flashes,” Bull. Am. Meteor. Soc. 2016, 639 (2016).

    ADS  Article  Google Scholar 

  22. 22

    C. P. R. Saunders, H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, “Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification,” Quart. J. R. Meteor. Soc. 132, 2653–2673 (2006).

    ADS  Article  Google Scholar 

  23. 23

    S. Lee, B. H. Kahn, and J. Teixeira, “Characterization of cloud liquid water content distributions from CloudSat,” J. Geophys. Res. 115, D20203 (2010).

    ADS  Article  Google Scholar 

  24. 24

    http://crd.yerphi.am/adei.

  25. 25

    A. Chilingarian, A. Daryan, K. Arakelyan, A. Hovhannisyan, B. Mailyan, L. Melkumyan, G. Hovsepyan, S. Chilingaryan, A. Reymers, and L. Vanyan, “Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons,” Phys. Rev. D 86, 072003 (2010).

    Article  Google Scholar 

  26. 26

    E. Svechnikova, N. V. Ilin, and E. A. Mareev, “Recovery of electrical structure of the cloud with use of ground-based measurement results,” in Proceedings of TEPA-2018 Conference.

  27. 27

    www.mmm.ucar.edu/weather-research-and-forecasting-model.

  28. 28

    A. Chilingarian and H. Mkrtchyan, “Role of the Lower Positive Charge Region (LPCR) in initiation of the Thunderstorm Ground Enhancements (TGEs),” Phys. Rev. D 86, 072003 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Meteosat. https://eumetview.eumetsat.int/mapviewer/.

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Chilingaryan for our fruitful discussions and providing access to the data array of the Aragats Scientific Station and A.A. Nozik for help in preparing this paper.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-05-80077 (investigation of the meteorological characteristics of TGEs) and the Russian Science Foundation, project no. 19-17-00218 (systematization of the information on the meteorological parameters of TGFs).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. K. Svechnikova.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svechnikova, E.K., Ilin, N.V. & Mareev, E.A. Meteorological Characteristics of Energetic Atmospheric Phenomena. Phys. Part. Nuclei Lett. 17, 840–847 (2020). https://doi.org/10.1134/S1547477120060102

Download citation