Unipolar Cherenkov and Diffraction Radiation of Relativistic Electrons


For ordinary (bipolar) radiation, the integral of the electric-field strength in time is zero. The possibility of generating unipolar radiation was theoretically considered in (E.G. Bessonov. Preprint no. 76, Lebedev Physical Institute, Academy of Sciences of the Soviet Union, Moscow, 1990) for the first time. In this work, unipolar radiation is defined as radiation for which the integral of the electric-field strength in time differs significantly from zero. Later, a number of theoretical articles were devoted to this problem, mainly as applied to synchrotron radiation. However, there are still no experimental studies of this phenomenon. This paper presents the results of an experimental observation of unipolar Cherenkov and diffraction radiation generated by relativistic electrons in the millimeter wavelength range. For this, a detector was developed that is sensitive to the selected direction of electric-field strength. We observed coherent Cherenkov radiation and the backward diffraction radiation of a beam of relativistic electrons when electrons move close to targets. The effect of partial unipolarity is registered for Cherenkov radiation, and almost complete unipolarity is observed for backward diffraction radiation.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.


  1. 1

    E. G. Bessonov, “On a class of electromagnetic waves,” Sov. Phys. JETP 53, 433 (1981).

    Google Scholar 

  2. 2

    R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, “Radiation of a resonant medium excited by few-cycle optical pulses at superluminal velocity (topical review),” Laser Phys. 27, 053001 (2017).

    ADS  Article  Google Scholar 

  3. 3

    V. V. Kozlov, N. N. Rosanov, C. de Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84, 023818 (2011).

    ADS  Article  Google Scholar 

  4. 4

    A. N. Bugay and S. V. Sazonov, “Generation of terahertz radiation in the regime of resonant-nonresonant optical rectification,” JETP Lett. 92, 232 (2010).

    ADS  Article  Google Scholar 

  5. 5

    D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    ADS  Article  Google Scholar 

  6. 6

    C. Raman, C. W. S. Conover, C. I. Sukenik, and P. H. Bucksbaum, Phys. Rev. Lett. 76, 2436 (1996).

    ADS  Article  Google Scholar 

  7. 7

    C. Raman, T. C. Weinacht, and P. H. Bucksbaum, Phys. Rev. A 55, R3995 (1997).

    ADS  Article  Google Scholar 

  8. 8

    T. J. Bensky, G. Haeffler, and R. R. Jones, Phys. Rev. Lett. 79, 2018 (1997).

    ADS  Article  Google Scholar 

  9. 9

    M. Schwarz, Ph. Basler, M. von Borstel, and A.‑S. Müller, “Analytic calculation of the electric field of a coherent THz pulse,” Phys. Rev. ST Accel. Beams 17, 050701 (2014).

    ADS  Article  Google Scholar 

  10. 10

    V. L. Bratman, D. A. Jaroszynski, S. V. Samsonov, and A. V. Savilov, “Generation of ultra-short quasi-unipolar electromagnetic pulses from quasi-planar electron bunches,” Nucl. Instrum. Methods Phys. Res., Sect. A 475, 436 (2001).

    Google Scholar 

  11. 11

    M. Schwarz, P. Basler, M. Borstel, and A. Muller, “Analytic calculation of the electric field of a coherent THz pulse,” Phys. Rev. ST Accel. Beams 17, 050701 (2014).

    ADS  Article  Google Scholar 

  12. 12

    M. Shevelev, G. Naumenko, A. Potylitsyn, and Yu. Popov, “Experimental research of diffraction and Vavilov–Cherenkov radiation generation in a teflon target,” J. Phys.: Conf. Ser. 357, 012020 (2012).

    Google Scholar 

  13. 13

    A. P. Kazantsev and G. I. Surdutovich, “Radiation from a charged particle flying near a metal screen,” Sov. Phys. Dokl. 7, 990 (1962).

    ADS  Google Scholar 

  14. 14

    A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Diffraction radiation from relativistic particles,” Springer Tracts Mod. Phys. 239 (2010).

  15. 15

    J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998).

    Google Scholar 

  16. 16

    N. L. Ter-Mikaelian, The Influence of the Medium on High Energy Processes at High Energies (Akad. Nauk ArmSSR, Yerevan, 1969) [in Russian].

  17. 17

    A. N. Aleinik, A. S. Aryshev, B. N. Kalinin, G. A. Naumenko, A. P. Potylitsyn, G. A. Saruev, A. F. Sharafutdinov, O. Yu. Malakhovskii, and E. A. Monastyrev, “Coherent diffraction radiation of a 6-MeV microtron electron beam,” JETP Lett. 76, 337 (2002).

    ADS  Article  Google Scholar 

  18. 18

    B. N. Kalinin, G. A. Naumenko, A. P. Potylitsyn, G. A. Saruev, L. G. Sukhikh, and V. A. Cha, “Measurement of the angular characteristics of transition radiation in near and far zones,” JETP Lett. 84, 110 (2006).

    Article  Google Scholar 

  19. 19

    V. Sargsyan, “Comparison of stripline and cavity beam position monitors,” TESLA Report No. 03 (2004).

  20. 20

    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

Download references


This work was supported by the Ministry of Education and Science of the Russian Federation (Science Program, basic part, no. 3.8427.2017/8.9) and a program to improve the competitiveness of Tomsk Polytechnic University.

Author information



Corresponding author

Correspondence to G. Naumenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naumenko, G., Shevelev, M. & Popov, K.E. Unipolar Cherenkov and Diffraction Radiation of Relativistic Electrons. Phys. Part. Nuclei Lett. 17, 834–839 (2020). https://doi.org/10.1134/S1547477120060096

Download citation