The RTS&T Code Coupled with the Microscopic Kinetic Model for Biological Calculations in Multi-Ion Therapy


The exact calculation of the delivered dose in the process of irradiating tumors with proton and carbon ion beams is one of the most important components of the process of planning radiation therapy. Today there are two advanced microdosimetric models for calculation the relative biological efficacy of radiation, that are used in clinical practice. This is Microdosimetric Kinetic Model (MKM) and Local Effect Model (LEM). This paper contains descriptions of the features of the implementation of the MKM as model that is included in the RTS&T code system. The results of theoretical and experimental studies of the main microdosimetric characteristics for cellular structures placed in homogeneous water phantoms irradiated with 454 MeV/u 12C6+ ions are presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    A. I. Blokhin, I. I. Degtyarev, A. E. Lokhovitskii, M. A. Maslov, and I. A. Yazynin, “RTS&T Monte Carlo code (facilities and computation methods),” in Proceedings of the SARE-3 Workshop, KEK, Tsukuba, Japan, May1997, INDC(CCP)-426.

  2. 2

    I. I. Degtyarev, O. A. Liashenko, I. A. Yazynin, A. I. Blokhin, and V. I. Belyakov-Bodin, “Simulation of relativistic hadronic interactions in the framework of the RTS&T-2004 code,” in Proceedings of the 19th Russian Particle Accelerator Conference RuPAC, Dubna,2004.

  3. 3

    I. I. Degtyarev, F. N. Novoskoltsev, O. A. Liashenko, E. V. Gulina, and L. V. Morozova, “The RTS&T-2014 code status,” Nucl. Energy Technol. 1, 222–225 (2015).

    Article  Google Scholar 

  4. 4

    A. A. Pryanichnikov, A. S. Simakov, I. I. Degtyarev, F. N. Novoskoltsev, E. V. Altukhova, Yu. V. Altukhov, R. Yu. Sinyukov, and A. I. Blokhin, “Verification of the world evaluated nuclear data libraries on the basis of intefral experiments using the RTS&T code system,” Probl. At. Sci. Technol., Ser." Nucl. React. Const., No. 1, 1–13 (2018).

  5. 5

    D. E. Cullen, “The 1996 ENDF/B pre-processing codes,” IAEA-NDS-39, Rev. 9 (Int. Atomic Energy Agency, Vienna, Austria, 1996).

  6. 6

    K. Niita et al., Phys. Rev. C 52, 2620 (1995).

    ADS  Article  Google Scholar 

  7. 7

    V. S. Barashenkov, F. G. Zheregy, and Zh. Zh. Musulmanbekov, Preprint JINR P2-83-117 (Dubna, 1983).

  8. 8

    F. Salvat, J. M. Fernández-Varea, and J. Sempau, “PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport,” in Proceedings of the Workshop, Barcelona, Spain, 30 June–3 July 2008 (OECD, 2009), NEA No. 6416.

  9. 9

    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—The stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).

    Google Scholar 

  10. 10

    H. Paul, Stopping Power for Light Ions. http://

  11. 11

    T. V. Armstrong and K. C. Chandler, “A FORTRAN program for computing stopping powers and ranges for muons, charged pions, protons, and heavy ions,” ORNL-4869.

  12. 12

    H. Geissel and C. Scheidenberger, Nucl. Instrum. Methods Phys. Res., Sect. B 136, 114 (1998).

    Google Scholar 

  13. 13

    A. A. Pryanichnikov, A. S. Simakov, Y. V. Altukhov, E. V. Altukhova, I. I. Degtyarev, F. N. Novoskoltsev, and R. Yu. Sinyukov, “Numerical simulation of real-time Bragg peak position detection based on the registration of prompt gamma rays in the orthogonal direction for application in hadronic therapy,” Probl. At. Sci. Technol., Ser.: Nucl. React. Const., No. 1, 1–12 (2018).

  14. 14

    A. A. Pryanichnikov et al., “Numerical modeling and development of the prototype of the bragg peak position detector working in real time mode for hadron therapy facilities,” in Proceedings of the Russian Particle Accelerator Conference RUPAC'18, Protvino, Russia, Oct.2018, pp. 220–221.

  15. 15

    F. Guan, C. Peeler, L. Bronk, and G. Changran, “Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the Geant4 Monte Carlo code,” Med. Phys. 42, 6234–6247 (2015).

    Article  Google Scholar 

  16. 16

    R. B. Hawkins, Int. J. Radiat. Biol. 69, 739 (1996).

    Article  Google Scholar 

  17. 17

    R. B. Hawkins, Radiat. Res. 160, 61 (2003).

    ADS  Article  Google Scholar 

  18. 18

    Y. Kase, T. Kanai, and Y. Matsumoto, Radiat. Res. 166, 629 (2006).

    ADS  Article  Google Scholar 

  19. 19

    D. Dabli, G. Montarou, M. Beuve, and C. Rodriguez-Lafrasse, “RBE modelization: Present status and future prospects” (2011).

  20. 20

    T. Inaniwa, N. Kanematsu, N. Matsufuji, T. Kanai, T. Shirai, K. Noda, H. Tsuji, T. Kamada, and H. Tsujii, “Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences,” Jpn. Phys. Med. Biol. 60, 3271–3286 (2015).

    Article  Google Scholar 

  21. 21

    Ilsung Cho, Seung Hoon Yoo, Sungho Cho, Eun Ho Kim, Yongkeun Song, Jae-ik Shin, and Won-Gyun Jung, “Modeling the biophysical effects in a carbon beam delivery line using Monte Carlo simulation,” arXiv: 1607.06204 [].

  22. 22

    K. Claesson, K. Magnander, H. Kahu, S. Lindgren, R. Hulborn, and K. Elmroth, “RBE of a-particles from 211At for complex DNA damage and cell survival in relation to cell cycle position,” Int. J. Radiat. Biol. 87, 372–384 (2011).

    Article  Google Scholar 

  23. 23

    U. Amaldi and G. Kraft, “Radiotherapy with beams of carbon ions,” Rep. Prog. Phys. 68, 1861–1882 (2005).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Pryanichnikov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pryanichnikov, A.A., Simakov, A.S., Belikhin, M.A. et al. The RTS&T Code Coupled with the Microscopic Kinetic Model for Biological Calculations in Multi-Ion Therapy. Phys. Part. Nuclei Lett. 17, 629–634 (2020).

Download citation