Skip to main content
Log in

On Relation between Bulk, Surface and Curvature Parts of Nuclear Binding Energy within the Model of Hexagonal Clusters

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Using the model of hexagonal clusters we express the surface, curvature and Gauss curvature coefficients of the nuclear binding energy in terms of its bulk coefficient. Using the derived values of these coefficients and a single fitting parameter we are able to reasonably well describe the experimental binding energies of symmetric nuclei with more than 100 nucleons. To improve the description of lighter nuclei we introduce the same correction for all the coefficients. In this way we determine the apparent values of the surface, curvature and Gauss curvature coefficients which may be used for infinite nuclear matter equation of state. This simple model allows us to fix the temperature dependence of all these coefficients, if the temperature dependence for the bulk term is known. The found estimates for critical temperature are well consistent both with experimental and with theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 133–221 (1995).

    Article  ADS  Google Scholar 

  2. M. E. Fisher, “The theory of condensation and the critical point,” Physics 3, 255–283 (1967).

    Article  MathSciNet  Google Scholar 

  3. S. Das Gupta and A. Z. Mekjian, “Phase transition in a statistical model for nuclear multifragmentation,” Phys. Rev. C 57, 1361–1365 (1998).

    Article  ADS  Google Scholar 

  4. K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin, and W. Greiner, “Exactly soluble model for nuclear liquid-gas phase transition,” Phys. Rev. C 62, 044320-1–044320-15 (2000); “Statistical multifragmentation in thermodynamic limit,” Phys. Lett. B 498, 144–148 (2001).

    Article  ADS  Google Scholar 

  5. P. T. Reuter and K. A. Bugaev, “Critical exponents of the statistical multifragmentation model,” Phys. Lett. B 517, 233–238 (2001).

    Article  ADS  Google Scholar 

  6. V. V. Sagun, A. I. Ivanytskyi, K. A. Bugaev, and I. N. Mishustin, “The statistical multifragmentation model for liquid–gas phase transition with a compressible nuclear liquid,” Nucl. Phys. A 924, 24–46 (2014).

    Article  ADS  Google Scholar 

  7. V. V. Sagun et al., “Hadron resonance gas model with induced surface tension,” Eur. Phys. J. A 54, 100–115 (2018).

    Article  ADS  Google Scholar 

  8. A. I. Ivanytskyi, K. A. Bugaev, V. V. Sagun, L. V. Bravina, and E. E. Zabrodin, “Influence of flow constraint on the properties of Nuclear Matter Critical Endpoint,” Phys. Rev. C 97, 064905-1–064905-8 (2018).

    Article  ADS  Google Scholar 

  9. L. van Hove, “Quelques proprietes generales de l’integrale de configuration d’un systeme de particules avec interaction,” Physica (Amsterdam, Neth.) 15, 951–961 (1949).

    Article  ADS  Google Scholar 

  10. L. van Hove, “Sur l’integrale de configuration pour les systemes de particules a une dimension,” Physica (Amsterdam, Neth.) 16, 137–143 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  11. C. F. von Weizsäcker, “Zur Theorie de Kernmassen,” Z. Phys. 96, 431–458 (1935).

    Article  Google Scholar 

  12. W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nucl. Phys. 81, 1–60 (1966).

    Article  Google Scholar 

  13. W. D. Myers and W. J. Swiatecki, “Nuclear properties according to the Thomas-Fermi model,” Nucl. Phys. A 601, 141–167 (1996).

    Article  ADS  Google Scholar 

  14. M. Brack, C. Guet and H. B. Hókansson, “Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models,” Phys. Rep. 123, 276–364 (1984).

    Google Scholar 

  15. K. Pomorski and J. Dudek, “Nuclear liquid-drop model and surface-curvature effects,” Phys. Rev. C 67, 044316-1–044316-13 (2003).

    Article  ADS  Google Scholar 

  16. V. M. Kolomietz and A. I. Sanzhur, “Equation of state and symmetry energy within the stability valley,” Eur. Phys. J. A 38, 345–354 (2008).

    Article  ADS  Google Scholar 

  17. L. G. Moretto, P. T. Lake, and L. Phair, “Reexamination and extension of the liquid drop model: Correlation between liquid drop parameters and curvature term,” Phys. Rev. C 86, 021303(R)-1–021303(R)-5 (2012).

  18. V. M. Kolomietz, S. V. Lukyanov, and A. I. Sanzhur, “Curved and diffuse interface effects on the nuclear surface tension,” Phys. Rev. C 86, 024304-1–024304-8 (2012).

    Article  ADS  Google Scholar 

  19. D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission phenomena,” Phys. Rev. 89, 1102–1145 (1953).

    Article  ADS  Google Scholar 

  20. A. Dillmann and G. E. Meier, “A refined droplet approach to the problem of homogeneous nucleation from the vapor phase,” J. Chem. Phys. 94, 3872–3884 (1991).

    Article  ADS  Google Scholar 

  21. A. Laaksonen, I. J. Ford, and M. Kulmala, “Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation,” Phys. Rev. E 49, 5517–5524 (1994).

    Article  ADS  Google Scholar 

  22. J. G. Kirkwood and F. P. Buff, “The statistical mechanical theory of surface tension,” J. Chem. Phys. 17, 338–343 (1949).

    Article  ADS  Google Scholar 

  23. D. G. Ravenhall, C. J. Pethick, and J. M. Lattimer, “Nuclear interface energy at finite temperatures,” Nucl. Phys. A 407, 571–591 (1983).

    Article  ADS  Google Scholar 

  24. A. L. Mackay, “A dense non-crystallographic packing of equal spheres,” Acta Crystallogr. 15, 916–918 (1962).

    Article  Google Scholar 

  25. T. H. R. Skyrme, “CVII. The nuclear surface,” Philos. Mag. 1, 1043–1054 (1956).

    Article  ADS  Google Scholar 

  26. T. H. R. Skyrme, “The effective nuclear potential,” Nucl. Phys. 9, 615–634 (1959).

    Article  Google Scholar 

  27. V. A. Karnaukhov, “Nuclear multifragmentation and phase transitions in hot nuclei,” Phys. Part. Nucl. 37, 165–193 (2006).

    Article  Google Scholar 

  28. J. R. Stone, N. J. Stone, and S. A. Moszkowski, “Incompressibility in finite nuclei and nuclear matter,” Phys. Rev. C 89, 044316-1–044316-25 (2014).

    Article  ADS  Google Scholar 

  29. Y. Wang et al., “Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV,” Phys. Lett. B 778, 207–212 (2018).

    Article  ADS  Google Scholar 

  30. J. Richert and P. Wagner, “Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter,” Phys. Rep. 350, 1–92 (2001).

    Article  ADS  Google Scholar 

  31. K. A. Bugaev, L. Phair, and J. B. Elliott, “Surface partition of large clusters,” Phys. Rev. E 72, 047106-1–047106-4 (2005).

    Article  ADS  Google Scholar 

  32. K. A. Bugaev and J. B. Elliott, “Exactly soluble models for surface partition,” Ukr. J. Phys. 52, 301–308 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to O.M. Gorbachenko, B.E. Grinyuk, V.Yu. Denisov, A.P. Kobushkin, I.N. Mishustin and L.M. Satarov for fruitful discussions and valuable comments. K.A.B. is grateful to the COST Action CA15213 “THOR” for supporting his networking. Also K.A.B. is grateful for a warm hospitality to the colleagues from the university of Oslo, where this work was completed.

Funding

V.V.S. thanks the Fundaç ao para a Ciência e Tecnologia (FCT), Portugal, for the financial support through the grant no. UID/FIS/04564/2019. The work of V.V.S., K.A.B., O.I.I. was supported in part by the Program of Fundamental Research of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (project no. 0117U000240). The work of O.I.I. was done within the project SA083P17 of Universidad de Salamanca launched by the Regional Government of Castilla y Leon and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bugaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagun, V.V., Bugaev, K.A. & Ivanytskyi, O.I. On Relation between Bulk, Surface and Curvature Parts of Nuclear Binding Energy within the Model of Hexagonal Clusters. Phys. Part. Nuclei Lett. 16, 671–680 (2019). https://doi.org/10.1134/S1547477119060517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119060517

Navigation