Skip to main content
Log in

On the Possibility to Study Antiproton Production at the SPD Detector at NICA Collider for Dark Matter Search in Astrophysical Experiments

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript


Dark matter is an important component of the Standard model of cosmology but its nature is still unknown. One of the most common explanations is that dark matter consists of Weakly Interacting Massive Particles (WIMPs), supposed to be cold thermal relics of the Big Bang and to build up the galactic dark halos. Indirect search of dark matter could be performed via the study of an anomalous antiproton component in cosmic rays originating from possible annihilation of dark matter pairs in the galactic halo, on top of the standard astrophysical production. The measurements performed by the AMS-02 and PAMELA spectrometers have shown that limited knowledge of antiproton-production cross sections in pp, \(pD,\)\(pHe\) and \(HeHe\) collisions is one of the main uncertainties of background subtraction. The planned SPD experiment at the NICA collider could provide a precision measurement of antiproton yield in wide kinematic range in \(pp\) and \(pD\) collisions at the energy scale from the threshold to \(\sqrt s \) = 26 GeV/c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others


  1. O. Adriani et al. (PAMELA Collab.), “Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 HeV in the PAMELA experiment,” JETP Lett. 96, 621–627 (2013).

    Article  ADS  Google Scholar 

  2. M. Aguilar et al. (AMS Collab.), “Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station,” Phys. Rev. Lett. 117, 0911103 (2016).

    Google Scholar 

  3. G. Giesen, M. Boudaud, Y. Genolini, V. Poulin, M. Cirelli, P. Salati, and P. D. Serpico, “AMS-02 antiprotons, at last! secondary astrophysical component and immediate implications for dark matter,” J. Cosmol. Astropart. Phys. 2015 (09), 023 (2015).

  4. M. W. Winkler, “Cosmic ray antiprotons at high energies,” J. Cosmol. Astropart. Phys. 2017, 048 (2017).

  5. R. Kappl and M. Winkler, “The cosmic ray antiproton background for AMS-02,” J. Cosmol. Astropart. Phys. 09 (051), 1–23 (2014).

    Google Scholar 

  6. M. di Mauro, F. Donato, A. Goudelis, and P. D. Serpico, “New evaluation of the antiproton production cross section for cosmic ray studies,” Phys. Rev. D: Part. Fields 90, 085017 (2014).

    Article  ADS  Google Scholar 

  7. F. Donato, M. Korsmeier, and M. di Mauro, “Prescriptions on antiproton cross section data for precise theoretical antiproton flux predictions,” Phys. Rev. D: Part. Fields 96, 043007 (2017). PhysRevD.96.043007.

    Article  ADS  Google Scholar 

  8. G. A. de Nolfo, L. M. Barbier, E. R. Christian, A. J. Davis, R. L. Golden, M. Hof, K. E. Krombel, A. W. Labrador, W. Menn, R. A. Mewaldt, J. W. Mitchell, J. F. Ormes, L. Rasmussen, O. Reimer, S. M. Schindler, et al., “A measurement of cosmic ray deuterium from 0.5–2.9 GeV/nucleon,” in CP528, Acceleration and Transport of Energetic Particles Observed in the Heliosphere, Proceedings of the ACE 2000 Symposium, Ed. by R. A. Mewaldt et al., AIP Conf. Proc. 528, 425–428 (2000).

  9. E. Vannuccini, “Study of the deuterium spectrum in cosmic rays with the CAPRICE98 experiment,” PhD Thesis.

  10. T. Wilson and R. Rood, “Abundances in the interstellar medium,” Astron. Astrophys. 32, 191–226 (1994).

    Article  ADS  Google Scholar 

  11. J. Beringer et al. (Particle Data Group), “Review of particle physics,” Phys. Rev. D: Part. Fields 86, 010001 (2012). 86.010001.

    Article  ADS  Google Scholar 

  12. I. Arsene et al. (BRAHMS Collab.), “Production of mesons and baryons at high rapidity and high in proton-proton collisions at √s = 200 GeV,” Phys. Rev. Lett. 98, 252001 (2007).

    Article  ADS  Google Scholar 

  13. T. Anticic et al. (The NA49 Collab.), “Inclusive production of protons, anti-protons and neutrons in p+p collisions at 158 Gev/c beam momentum,” Eur. Phys. J. C 65, 9–63 (2010).

    Article  ADS  Google Scholar 

  14. D. Dekkers, J. A. Geibel, R. Mermod, G. Weber, T. R. Willitts, K. Winter, B. Jordan, M. Vivargent, N. M. King, and E. J. N. Wilson, “Experimental study of particle production at small angles in nucleon-nucleon collisions at 19 and 23 GeV/c,” Phys. Rev. B 137, 962–978 (1965). 10.1103/PhysRev.137.B962

    Article  ADS  Google Scholar 

  15. J. V. Allaby, F. G. Binon, A. N. Diddens, P. Duteil, A. Klovning, and R. Meunier, “High-energy particle spectra from proton interactions at 19.2 GeV/c,” CERN-70-12 (1970).

  16. P. Capiluppi, G. Giacomelli, A. Rossi, G. Vannini, A. Bertin, A. Bussiere, and R. Ellis, “Charged particle production in proton-proton inclusive reactions at very high energies,” Nucl. Phys. B 79, 189–258 (1974). 0550321374904842.

    Article  ADS  Google Scholar 

  17. K. Guettler, B. Duff, M. Prentice, S. Sharrock, W. Gibson, A. Duane, H. Newman, H. Ogren, H. Böggild, S. Henning, G. Jarlskog, R. Little, T. Sanford, and S. Wu, “Inclusive production of low-momentum charged pions, kaons, and protons at x = 0 at the CERN intersecting storage rings,” Nucl. Phys. B 116, 77–98 (1976).

    Article  ADS  Google Scholar 

  18. J. R. Johnson, R. Kammerud, T. Ohsugi, D. J. Ritchie, R. Shafer, D. Theriot, J. K. Walker, and F. E. Taylor, “Inclusive production of π±, K±, p, p in high-energy pp collisions,” Phys. Rev. Lett. 39, 1173–1176 (1977).

    Article  ADS  Google Scholar 

  19. D. Antreasyan, J. W. Cronin, H. J. Frisch, M. J. Shochet, L. Kluberg, P. A. Piroué, and R. L. Sumner, “Production of hadrons at large transverse momentum in 200-, 300-, and 400-GeV pp and p-nucleus collisions,” Phys. Rev. D: Part. Fields 19, 764–778 (1979).

    Article  ADS  Google Scholar 

  20. A. Aduszkiewicz et al. (NA61 Collab.), “Measurements of π±, K±, p, and p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS,” Eur. Phys. J. C 77, 671 (2017).

    Article  ADS  Google Scholar 

  21. R. Aaij et al. (LHCb Collab.), “Measurement of antiproton production in collisions at √s NN =110 GeV,” Phys. Rev. Lett. (2018, submitted); arXiv:1808.06127.

  22. O. Yu. Denisov et al. (COMPASS Collab.), “Letter of intent: a new QCD facility at the M2 beam line of the CERN SPS,” arXiv:1808.00848 (2018).

  23. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, and G. Trubnikov, “Status of the NICA project at JINR,” EPJ Web Conf. 138, 01027 (2017).

  24. V. Toneev, “The NICA/MPD project at JINR (Dubna),” PoSC POD07, 057 (2007); arXiv:0709.1459 [nucl-ex].

  25. I. Savin, A. Efremov, D. Peshekhonov, A. Kovalenko, O. Teryaev, O. Shevchenko, A. Nagajcev, A. Guskov, V. Kukhtin, and N. Toplilin, “Spin physics experiments at NICA-SPD with polarized proton and deuteron beams,” EPJ Web Conf. 85, 02039 (2015); arXiv:1408.3959 [hep-ex].

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. Guskov or R. El-Kholy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, A., El-Kholy, R. On the Possibility to Study Antiproton Production at the SPD Detector at NICA Collider for Dark Matter Search in Astrophysical Experiments. Phys. Part. Nuclei Lett. 16, 216–223 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: