Skip to main content
Log in

Evaluation of Radiation-Induced Damage in Membrane Ion Channels and Synaptic Receptors

  • RADIOBIOLOGY, ECOLOGY AND NUCLEAR MEDICINE
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The study of irradiation of brain cells with exposure to accelerated charged particles is essential topic in modern radiobiological research. Using Geant4-DNA based Monte-Carlo simulation of particle tracks we studied initial energy deposition and radiolytic species production within critical targets on neural cells: voltage-gated membrane channels and synaptic receptors. According to the modeling results the most probable targets for radiation damage can be attributed to synaptic receptors of GABA and NMDA type rather than ion channels. Indirect damage caused by chemical interaction with free radicals dominates over direct ionization events. We also provide an estimation for damage induction efficiency after the exposure with particles of different dose and linear energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. Greene-Schloesser, M. E. Robbins, A. M. Peiffer, E. G. Shaw, K. T. Wheeler, and M. D. Chan, “Radiation-induced brain injury: a review,” Front Oncol. 2, 73 (2012).

    Article  Google Scholar 

  2. A. I. Grigor’ev, E. A. Krasavin, and M. A. Ostrovsky, “The problem of the radiation barrier during piloted interplanetary flights,” Herald Russ. Acad. Sci. 87, 63 (2017).

    Article  Google Scholar 

  3. F. A. Cucinotta, “Review of NASA approach to space radiation risk assessments for Mars exploration,” Health Phys. 108, 131 (2015).

    Article  Google Scholar 

  4. A. O. Sapetsky, I. B. Ushakov, N. V. Sapetsky, A. S. Shtemberg, N. S. Kositsin, and N. N. Timofeev, “Radiation neurobiology of long-term spaceflights,” Biol. Bull. Rev. 7, 443 (2017).

    Article  Google Scholar 

  5. V. K. Parihar, B. Allen, K. K. Tran, T. G. Macaraeg, E. M. Chu, S. F. Kwok, N. N. Chmielewski, B. M. Craver, J. E. Baulch, M. M. Acharya, F. A. Cucinotta, and C. L. Limoli, “What happens to your brain on the way to Mars,” Sci. Adv. 1, e1400256 (2015).

    Article  ADS  Google Scholar 

  6. P. H. Wu, S. Coultrap, C. Pinnix, K. D. Davies, R. Tailor, K. K. Ang, M. D. Browning, and D. R. Grosshans, “Radiation induces acute alterations in neuronal function,” PloS ONE 7, e37677 (2012).

    Article  ADS  Google Scholar 

  7. M. Machida, G. Lonart, and R. A. Britten, “Low (60 cGy) doses of 56Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes,” Radiat. Res. 174, 618 (2010).

    Article  ADS  Google Scholar 

  8. R. A. Britten, L. K. Davis, J. S. Jewell, V. D. Miller, M. M. Hadley, L. D. Sanford, M. Machida, and G. Lonart, “Exposure to mission relevant doses of 1 GeV/nucleon 56Fe particles leads to impairment of attentional set-shifting performance in socially mature rats,” Radiat. Res. 182, 292 (2014).

    Article  ADS  Google Scholar 

  9. R. Vlkolinsky, E. Titova, T. Krucker, B. B. Chi, M. Staufenbiel, G. A. Nelson, and A. Obenaus, “Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice,” Radiat. Res. 173, 342 (2010).

    Article  ADS  Google Scholar 

  10. M. J. Mullin, W. A. Hunt, and R. A. Harris, “Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes,” J. Neurochem. 47, 489 (1986).

    Article  Google Scholar 

  11. I. V. Sokolova, C. J. Schneider, M. Bezaire, I. Soltesz, R. Vlkolinsky, and G. A. Nelson, “Proton radiation alters intrinsic and synaptic properties of CA1 pyramidal neurons of the mouse hippocampus,” Radiat. Res. 183, 208 (2015).

    Article  ADS  Google Scholar 

  12. M. Batmunkh, O. V. Belov, L. Bayarchimeg, O. Lhagva, and N. H. Sweilam, “Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams,” J. Radiat. Res. Appl. Sci. 8, 498 (2015).

    Article  Google Scholar 

  13. M. Alp, V. K. Parihar, C. L. Limoli, and F. A. Cucinotta, “Irradiation of neurons with high-energy charged particles: an in silico modeling approach,” PLoS Comput. Biol. 11, e1004428 (2015).

    Article  ADS  Google Scholar 

  14. L. Bayarchimeg, M. Batmunkh, O. Belov, and O. Lkhagva, “Simulation of radiation damage to neural cells with the Geant4-DNA toolkit,” EPJ Web Conf. 173 (2018).

  15. O. V. Belov, M. Batmunkh, S. Incerti, and O. Lkhagva, “Radiation damage to neuronal cells: simulating the energy deposition and water radiolysis in a small neural network,” Phys. Med. 32, 1510 (2016).

    Article  Google Scholar 

  16. M. Alp and F. A. Cucinotta, “Biophysics model of heavy-ion degradation of neuron morphology in mouse hippocampal granular cell layer neurons,” Radiat. Res. 189, 312 (2018).

    Article  ADS  Google Scholar 

  17. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,” Nucl. Acid Res. 28, 235 (2000).

    Article  Google Scholar 

  18. C. H. Lee, W. Lu, J. C. Michel, A. Goehring, J. Du, X. Song, and E. Gouaux, “NMDA receptor structures reveal subunit arrangement and pore architecture,” Nature (London, U.K.) 511, 191 (2014).

    Article  ADS  Google Scholar 

  19. A. I. Sobolevsky, M. P. Rosconi, and E. Gouaux, “X‑ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor,” Nature (London, U.K.) 462, 745 (2009).

    Article  ADS  Google Scholar 

  20. P. S. Miller and A. R. Aricescu, “Crystal structure of a human GABAA receptor,” Nature (London, U.K.) 512, 270 (2014).

    Article  ADS  Google Scholar 

  21. D. A. Doyle, “The structure of the potassium channel: molecular basis of K+ conduction and selectivity,” Science (Washington, DC, U. S.) 280, 69 (1980).

    Article  Google Scholar 

  22. X. Zhang, W. Ren, P. DeCaen, C. Yan, X. Tao, L. Tang, J. Wang, K. Hasegawa, T. Kumasaka, J. He, J. Wang, D. E. Clapham, and N. Yan, “Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel,” Nature (London, U.K.) 486, 130 (2012).

    Article  ADS  Google Scholar 

  23. L. Tang, T. M. Gamal El-Din, J. Payandeh, G. Q. Martinez, T. M. Heard, T. Scheuer, N. Zheng, and W. A. Catterall, “Structural basis for Ca2+ selectivity of a voltage-gated calcium channel,” Nature (London, U.K.) 505, 56 (2013).

    Article  ADS  Google Scholar 

  24. G. A. Ascoli, D. E. Donohue, and M. Halavi, “NeuroMorpho.Org: a central resource for neuronal morphologies,” J. Neurosci. 27, 9247 (2007).

    Article  Google Scholar 

  25. N. L. Desmond and W. B. Levy, “Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location,” Neurosci. Lett. 54, 219 (1985).

    Article  Google Scholar 

  26. E. Gould, M. D. Allan, and B. S. McEwen, “Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone,” Brain Res. 525, 327 (1990).

    Article  Google Scholar 

  27. M. Papa, M. C. Bundman, V. Greenberger, and M. Segal, “Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons,” J. Neurosci. 15, 1 (1995).

    Article  Google Scholar 

  28. A. Belly, G. Bodon, B. Blot, A. Bouron, R. Sadoul, and Y. Goldberg, “CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines,” J. Cell Sci. 123, 2943 (2010).

    Article  Google Scholar 

  29. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchin, P. Gueye, R. Capra, P. Nieminen, and C. Zacharatou, “Comparison of GEANT4 very low energy cross section models with experimental data in water,” Med. Phys. 37, 4692 (2010).

    Article  Google Scholar 

  30. M. A. Bernal, D. Sikansi, F. Cavalcante, S. Incerti, C. Champion, V. Ivanchenko, and Z. Francis, “An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations,” Comput. Phys. Commun. 184, 2840 (2013).

    Article  ADS  Google Scholar 

  31. E. Delage, Q. T. Pham, M. Karamitros, H. Payno, V. Stepan, S. Incerti, L. Maigne, and Y. Perrot, “PDB4DNA: implementation of DNA geometry from the protein data bank (PDB) description for Geant4-DNA Monte-Carlo simulations,” Comput. Phys. Commun. 192, 282 (2015).

    Article  ADS  Google Scholar 

  32. A. Amato, C. N. Connolly, S. J. Moss, and T. G. Smart, “Modulation of neuronal and recombinant GABAA receptors by redox reagents,” J. Physiol. 517, 35 (1999).

    Article  Google Scholar 

  33. R. Janaky, V. Varga, P. Saransaari, and S. S. Oja, “Glutathione modulates the n-methyl-d-aspartate receptor-activated calcium influx into cultured rat cerebellar granule cells,” Neurosci. Lett. 156, 153 (1993).

    Article  Google Scholar 

  34. S. B. Curtis, M. E. Vazquez, J. W. Wilson, W. Atwell, M. Kim, and J. Capala, “Cosmic ray hit frequencies in critical sites in the central nervous system,” Adv. Space Res. 22, 197 (1998).

    Article  ADS  Google Scholar 

  35. B. M. Rabin, J. A. Joseph, W. A. Hunt, T. B. Dalton, S. B. Kandasamy, A. H. Harris, and B. Ludewigt, “Behavioral endpoints for radiation injury,” Adv. Space Res. 14, 457 (1994).

    Article  ADS  Google Scholar 

  36. L. D. Cohen, R. Zuchman, O. Sorokina, A. Muller, D. C. Dieterich, J. D. Armstrong, T. Ziv, and N. E. Ziv, “Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance,” PLoS ONE 8, e63191 (2013).

    Article  ADS  Google Scholar 

  37. A. V. Boreyko, A. N. Bugay, T. S. Bulanova, E. B. Dusha-nov, L. Jezkova, E. A. Kulikova, E. V. Smirnova, M. G. Zadneprianetc, and E. A. Krasavin, “Clustered DNA double-strand breaks and neuroradiobiological effects of accelerated charged particles,” Phys. Part. Nucl. Lett. 15, 551 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was conducted as part of the joint research between the Laboratory of Radiation Biology of JINR and the National University of Mongolia. The authors also acknowledge financial support of Russian Foundation for Basic Research (grant no. 17-29-01007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bugay.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayarchimeg, L., Batmunkh, M., Bugay, A.N. et al. Evaluation of Radiation-Induced Damage in Membrane Ion Channels and Synaptic Receptors. Phys. Part. Nuclei Lett. 16, 54–62 (2019). https://doi.org/10.1134/S1547477119010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119010059

Keywords:

Navigation