Investigation of Hadronic Quasi-Three-Body B Decays

Abstract

We interest to investigate of the quasi-three-body decays of B0 meson to \({f_0}(980){K^ + }{\pi ^ - }({f_0}(980) \to \pi \pi )\) and \({\bar D_1}{(2420)^0}{\pi ^ + }{\pi ^ - }(\bar D_1^0) \to D{^{*-} }{\pi ^ + }\). The analysis of mentioned four-body decays is such as to factorize into the three-body decay and several channels observed. Hadronic three-body decays include both non-resonant and resonant contributions, on the basis of the factorization approach. In the case of B0 to vector pseudoscalar states appeared in factorized terms, the B* pole contribution is considered. Hence the matrix element of the B* → D1 weak transition and strong vertex is computed. Therefore the theoretical values are (1.418 ± 0.21) × 10−6 and (1.44 ± 0.2) × 10−4, while the experimental results of them are \((1.4_{-0.6}^{+0.5})\times10^{-6}\), respectively. Comparing computational analysis values with experimental values show that our results are in agreement with them.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.-H. Kyeong et al. (Belle Collab.), Phys. Rev. D 80, 051103 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    R. Aaij et al. (LHCb Collab.), Phys. Rev. D 87, 092001 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  4. 4.

    H. Mehraban and B. Mohammadi, Adv. High. Energy. Phys. 2013, 989843 (2013).

    Article  Google Scholar 

  5. 5.

    T. Branz, T. Gustsche, and V. E. Lyubovitskij, Eur. Phys. J. A 37, 303–317 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    R. H. Dalitz, Philos. Mag. 44, 1068 (1953).

    Article  Google Scholar 

  7. 7.

    B. Bajc, S. Fajfer, R. J. Oakes, T. N. Pham, and S. Prelovsek, Phys. Lett. B 447, 9809262 (1999).

    Article  Google Scholar 

  8. 8.

    S. Fajfer, R. J. Oakes, and T. N. Pham, Phys. Rev. D 60, 054029 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    H. Y. Cheng, Int. J. Mod. Phys. A 23, 3229–3236 (2008).

    ADS  Article  Google Scholar 

  10. 10.

    H. Y. Cheng, C. K. Chua, and K. C. Yang, Phys. Rev. D 73, 014017 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    M. Neubert, Phys. Lett. B 418, 173–180 (1998).

    ADS  Article  Google Scholar 

  12. 12.

    H. Y. Cheng, C. K. Cheung, G. L. Lin, et al., J. High. Energy Phys. 1603, 028 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125–1144 (1996).

    ADS  Article  Google Scholar 

  14. 14.

    D. d’Enterria and M. Srebre, Phys. Lett. B 763, 465 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    A. J. Buras, Nucl. Phys. B 434, 606–618 (1995).

    ADS  Article  Google Scholar 

  16. 16.

    A. J. Buras, M. E. Lautenbacher, M. Misiak, and M. Munz, Nucl. Phys. B 423, 349 (1994).

    ADS  Article  Google Scholar 

  17. 17.

    A. Issadykov, M. A. Ivanov, and S. K. Sakhiyev, Phys. Rev. D 91, 074007 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    H. Y. Cheng and C. K. Chua, Phys. Rev. D 88, 114014 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    H. Y. Cheng and C. K. Chua, Phys. Rev. D 89, 074025 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    W. P. Chen, Y. C. Chen, T. W. Chiu, H. Y. Chou, T. S. Guu, and T. H. Hsieh, Phys. Lett. B 736, 231–236 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    J. M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner, A. Soni, R. S. V. Water, and O. Witzel, Phys. Rev. D 91, 074510 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 58, 094009 (1998).

    ADS  Article  Google Scholar 

  23. 23.

    C. H. Chen, C. Q. Geng, and Z. T. Wei, Eur. Phys. J. C 46, 367–377 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    W. Roberts, hep-ph/0204260.

  25. 25.

    H. Y. Cheng and K. C. Yang, Phys. Rev. D 66, 054015 (2002).

    ADS  Article  Google Scholar 

  26. 26.

    H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 72, 094003 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    M. A. Paracha, B. El-Bennich, M. J. Aslam, and I. Ahmed, J. Phys.: Conf. Ser. 630, 012050 (2015).

    Google Scholar 

  28. 28.

    J. M. Flynn, T. Izubuchi, T. Kawanai, C. Lehner, A. Soni, R. S. V. Water, and O. Witzel, Phys. Rev. D 91, 074510 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    B. Mohammadi and H. Mehraban, Adv. High. Energy. Phys. 2012, 203692 (2012).

    Article  Google Scholar 

  30. 30.

    N. G. Deshpande, G. Eilam, X. G. He, and J. Trampetic, Phys. Rev. D 52, 5354 (1995).

    ADS  Article  Google Scholar 

  31. 31.

    B. Mohammadi and H. Mehraban, Can. J. Phys. 93, 339 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    N. Ghahramany and R. Khosravi, Phys. Rev. D 81, 016012 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    M. A. Ivanov, J. G. Korner, S. G. Kovalenko, and C. D. Roberts, Phys. Rev. D 76, 034018 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Nucl. Phys. B 606, 245–321 (2001).

    ADS  Article  Google Scholar 

  35. 35.

    B. El-Bennich, M. A. Ivanov, and C. D. Roberts, Phys. Rev. C 83, 025205 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Y. L. Wu, M. Zhong, and Y. B. Zuo, Int. J. Mod. Phys. A 21, 6125–6172 (2006).

    ADS  Article  Google Scholar 

  37. 37.

    M. A. Ivanov, J. G. Korner, S. G. Kovalenko, P. Santorelli, and G. G. Saidullaeva, Phys. Rev. D 85, 034004 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    H. Y. Cheng, C. K. Chua, and C. W. Hwang, Phys. Rev. D 69, 074025 (2004).

    ADS  Article  Google Scholar 

  39. 39.

    P. Colangelo, F. D. Fazio, and W. Wang, Phys. Rev. D 81, 074001 (2010).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Estabar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Estabar, T., Mehraban, H. Investigation of Hadronic Quasi-Three-Body B Decays. Phys. Part. Nuclei Lett. 15, 601–609 (2018). https://doi.org/10.1134/S1547477118060201

Download citation