Skip to main content
Log in

Search of Possible Double Magic Nuclei in the Superheavy Valley Using Relativistic Mean Field Density Depending Coupling Models

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The magic nature and the stability of the various possible stable combinations of the nucleons (proton and neutron) are scrutinized with the help of density dependent relativistic mean filed model (DDRMF). To analyze the parameter dependence of our calculation three different parameters namely, DD-ME1, DD-ME2 and PKDD are used to calculate relevant properties of finite nuclei. In the present context S2n and δ2n are taken as the befitting quantities for the magic nature, and the existence of these predicted magic nuclei are justified from EB/A and λ. Finally the stability is studied by calculation of α-decay and β-decay half lifetime. Our calculation shows that certain combinations of nucleons i.e. Z = 114, 120 and 126 with N = 172, 184 and 198 respectively are best pair in their immediate neighbors to synthesize experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. T. Oganessian et al., Phys. Rev. C 74, 044602 (2006).

    Article  ADS  Google Scholar 

  2. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010).

    Article  ADS  Google Scholar 

  3. W. J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, Phys. Rev. C 71, 014602 (2005).

    Article  ADS  Google Scholar 

  4. Yu. Ts. Oganessian et al., Nat. Phys. 400, 242 (1999).

    Article  Google Scholar 

  5. S. Hofmann and G. Munzenberg, Rev. Mod. Phys. 72, 3 (2000).

    Article  Google Scholar 

  6. Zhao-Qing Feng, Gen-Ming Jin, Jun-Qing Li, and W. Scheid, Phys. Rev. C 76, 044606 (2007).

    Article  ADS  Google Scholar 

  7. A. Sobiczewski, Phys. Rev. C 89, 024311 (2014).

    Article  ADS  Google Scholar 

  8. A. Sobiczewski and Yuri A. Litvinov, Phys. Rev. C 90, 017302 (2014).

    Article  ADS  Google Scholar 

  9. Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015).

    Article  ADS  Google Scholar 

  10. S. K. Patra, Cheng-Li Wu, C. R. Praharaj, and Raj K. Gupta, Nucl. Phys. A 651, 117–139 (1999).

    Article  ADS  Google Scholar 

  11. W. D. Myers and W. J. Swiatecki, Nucl. Phys A 81, 1 (1966).

    Article  Google Scholar 

  12. H. Meldner, Ark. Fys. 36, 593 (1967).

    Google Scholar 

  13. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.-L. Lamm, P. Moller, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).

    Article  ADS  Google Scholar 

  14. U. Mosel and W. Greiner, Z. Phys. 222, 261 (1969).

    Article  ADS  Google Scholar 

  15. A. T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse, and S. Cwiok, Phys. Rev. C 61, 034313 (2000).

    Article  ADS  Google Scholar 

  16. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. 22, 500 (1966).

    Article  ADS  Google Scholar 

  17. G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir, Nucl. Phys. A 608, 202 (1996).

    Article  ADS  Google Scholar 

  18. S. K. Biswal, M. Bhuyan, S. K. Singh, and S. K. Patra, Int. J. Mod. Phys. E 23, 1450017 (2014).

    Article  ADS  Google Scholar 

  19. T. Sahoo, S. K. Biswal, R. L. Nayak, and A. Acharya, in Proceedings of the DAE-BRNS Symposium on Nuclear Physics, 2016, p.61.

    Google Scholar 

  20. B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  ADS  Google Scholar 

  21. G. A. Lalazissis, P. Ring, and D. Vretenar, Lect. Notes Phys. 641 (2004).

    Google Scholar 

  22. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  23. T. Niksi, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66, 024306 (2002).

    Article  ADS  Google Scholar 

  24. G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).

    Article  ADS  Google Scholar 

  25. W. Long, J. Meng, N. van Giai, and S.-G. Zhou, Phys. Rev. C 69, 034319 (2004).

    Article  ADS  Google Scholar 

  26. C. Fuchs, H. Lenske, and H. H. Wolter, Phys. Rev. C 52, 3043 (1995).

    Article  ADS  Google Scholar 

  27. F. de Jong and H. Lenske, Phys. Rev. C 57, 3099 (1998).

    Article  ADS  Google Scholar 

  28. S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).

    Article  ADS  Google Scholar 

  29. P. Moller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Table 109–110, 1–204 (2015).

    Google Scholar 

  30. G. Audi, A. H. Wapstra and C. Thibault, Nucl. Phys. A 729, 337–676 (2003).

    Article  ADS  Google Scholar 

  31. K. Rutz, M. Bender, T. Burvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).

    Article  ADS  Google Scholar 

  32. W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A 753, 106–135 (2005).

    Article  ADS  Google Scholar 

  33. H. Geiger and J. M. Nuttall, Philos. Mag. 22, 613 (1911).

    Article  Google Scholar 

  34. G. Royer and H. F. Zhang, Phys. Rev. C 77, 037602 (2008).

    Article  ADS  Google Scholar 

  35. V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).

    Article  Google Scholar 

  36. J. Dong, W. Zuo, and W. Scheid, Nucl. Phys. A 861, 1–13 (2011).

    Article  ADS  Google Scholar 

  37. Tiekuang Dong and Zhongzhou Ren, Eur. Phys. J. A 26, 69 (2005).

    Article  ADS  Google Scholar 

  38. https://www.nndc.bnl.gov/.

  39. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  40. A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A 384, 65 (1982).

    Article  ADS  Google Scholar 

  41. A. M. Kobos, B. A. Brown, R. Lindsay, and G. R. Satchler, Nucl. Phys. A 425, 205 (1984).

    Article  ADS  Google Scholar 

  42. M. J. Rhoades-Brown, V. E. Oberacker, M. Seiwert and W. Greiner, Z. Phys. A 310, 287–294 (1983).

    Article  ADS  Google Scholar 

  43. E. O. Fiset and J. R. Nix, Nucl. Phys. A 193, 647–671 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sahoo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, T., Biswal, S.K. & Acharya, A. Search of Possible Double Magic Nuclei in the Superheavy Valley Using Relativistic Mean Field Density Depending Coupling Models. Phys. Part. Nuclei Lett. 15, 585–600 (2018). https://doi.org/10.1134/S154747711806016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711806016X

Keywords

Navigation