Skip to main content
Log in

Structure of β-decay Strength Function Sβ(E) in Halo Nuclei

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

It is shown that when the parent nucleus has nn Borromean halo structure, then after Gamow–Teller (GT) β-decay of parent state or after M1 γ-decay of Isobar Analogue Resonance (IAR) the states with np tango halo structure or mixed np tango + nn Borromean halo structure can be populated. Resonances in the GT β-decay strength function Sβ(E) of halo nuclei, may have np tango halo structure or mixed np tango + nn Borromean halo structure. Correct interpretation of halo structure is important in experiments on β-decay study, interpretation of M1 γ-decay of IAR, and charge-exchange nuclear reactions analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Naumov, A. A. Bykov, and I. N. Izosimov, “Structure of β-decay strength functions,” Sov. J. Part. Nucl. 14, 175 (1983).

    Google Scholar 

  2. I. N. Izosimov, V. G. Kalinnikov, and A. A. Solnyshkin, “Fine structure of strength functions for beta decays of atomic nuclei,” Phys. Part. Nucl. 42, 963 (2011).

    Article  Google Scholar 

  3. I. N. Izosimov, A. A. Solnyshkin, J. H. Khushvaktov, and Yu. A. Vaganov, “Fine structure of beta decay strength function and anisotropy of isovector nuclear dencity component oscillations in deformed nuclei,” Phys. Part. Nucl. Lett. 15, 298 (2018); JINR Preprint E6-2017-29 (Dubna, 2017).

    Article  Google Scholar 

  4. I. Tanihata, “Neutron halo nuclei,” J. Phys. G: Nucl. Part. Phys. 22, 157 (1996).

    Article  ADS  Google Scholar 

  5. A. S. Jensen et al., “Structure and reactions of quantum halos,” Rev. Mod. Phys. 76, 215 (2004).

    Article  ADS  Google Scholar 

  6. B. Jonson, “Light dripline nuclei,” Phys. Rep. 389, 1 (2004).

    Article  ADS  Google Scholar 

  7. I. N. Izosimov, “Structure of the isobar analog states (IAS), double isobar analog states (DIAS), and configuration states (CS) in halo nuclei,” in Proceedings of the International Conference EXON2012, Vladivostok, Russia (World Scientific, 2013), p. 129, JINR Preprint E6-2012-121 (Dubna, 2012).

    Google Scholar 

  8. I. N. Izosimov, “Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers,” AIP Conf. Proc. 1681, 030006 (2015), JINR Preprint E6-2015-41 (Dubna, 2015).

    Article  Google Scholar 

  9. I. N. Izosimov, “Borromean halo, tango halo, and halo isomers in atomic nuclei,” EPJ Web Conf. 10, 09003 (2016).

    Article  Google Scholar 

  10. I. N. Izosimov, “Isospin in halo nuclei: borromean halo, tango halo, and halo isomers,” Phys. At. Nucl. 80, 867 (2017).

    Article  Google Scholar 

  11. Y. Suzuki and K. Yabana, “Isobaric analogue halo states,” Phys. Lett. B 272, 173 (1991).

    Article  ADS  Google Scholar 

  12. L. Zhihong, L. Weiping, B. Xixiang, W. Youbao, L. Gang, L. Zhichang, Z. Sheng, “First observation of neutron-proton halo structure for the 3.563 MeV 0+ state in 6Li via 1H(6He,6Li)n reaction,” Phys. Lett. B 527, 50 (2002).

    Article  Google Scholar 

  13. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov.

  14. Yu. V. Naumov and O. E. Kraft, Isospin in Nuclear Physics (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  15. J. K. Tuli, Report BNL-NCS-51655-01/02-Rev. (NNDC, Brookhaven Natl. Lab., New York, 2001).

    Google Scholar 

  16. Y. Fujita, H. Fujita, T. Adachi, C. L. Bai, A. Algora, G. P. A. Berg, P. Brentano, G. Colo, M. Csatlos, J. M. Deaven, E. Estevez-Aguado, C. Fransen, De D. Frenne, K. Fujita, E. Ganioglu, et al., “Observation of low-and high-energy Gamow-Teller phonon excitations in nuclei,” Phys. Rev. Lett. 112, 112502 (2014).

    Article  ADS  Google Scholar 

  17. Y. Fujita, H. Fujita, T. Adachi, G. Susoy, A. Algora, C.L. Bai, G. Colo, M. Csatlos, J. M. Deaven, E. Estevez-Aguado, C. J. Guess, J. Gulyas, K. Hatanaka, K. Hirota, M. Honma, et al., “High-resolution study of Gamow–Teller excitations in the 42Ca(3He,t) 42Sc reaction and the observation of a ‘low-energy super-Gamow–Teller state’,” Phys. Rev. C. 91, 064316 (2015).

    Article  ADS  Google Scholar 

  18. I. N. Izosimov, “Non-statistical effects manifestation in atomic nuclei,” Phys. Part. Nucl. 30, 131 (1999).

    Article  Google Scholar 

  19. E. P. Wigner, “Supermultiplets,” Phys. Rev. 51, 106 (1937).

    Article  ADS  Google Scholar 

  20. Yu. S. Lutostansky, V. N. Tikhonov, “Charge-exchange resonances and restoration of Wigner’s supersymmetry in heavy and super-heavy nuclei,” Phys. At. Nucl. 79, 929 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Izosimov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izosimov, I.N. Structure of β-decay Strength Function Sβ(E) in Halo Nuclei. Phys. Part. Nuclei Lett. 15, 621–626 (2018). https://doi.org/10.1134/S1547477118060092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118060092

Keywords

Navigation