Skip to main content
Log in

Colour Reconnection in WW Events and the Models with It

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The colour reconnection effects were intensively studied with LEP2 data and are a dominant sources of systematic uncertainty in the W boson mass in e+e annihilation at LEP2 and one of a dominant sources of systematic uncertainty in the top quark mass determination at hadronic colliders. With the discovery of Higgs boson, a new arena for the effects studies opened up. The effects are discussed within the existent different models and what future tests may come with a future FCC-ee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sjöstrand and V. A. Khoze, Z. Phys. C 62, 281 (1994).

    Article  ADS  Google Scholar 

  2. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (2014).

    Article  ADS  Google Scholar 

  3. T. Sjöstrand and V. A. Khoze, CERN–TH/98–74 (1998); hep-ph/9804202.

    Google Scholar 

  4. J. Rathsman, Phys. Lett. B 452, 364 (1999).

    Article  ADS  Google Scholar 

  5. G. Gustafson and J. Häkkinen, Z. Phys. C 64, 2 (1994).

    Article  Google Scholar 

  6. G. Gustafson, Phys. Lett. B 175, 453 (1996)

    Article  ADS  Google Scholar 

  7. G. Gustafson and U. Pettersson, Nucl. Phys. B 306, 746 (1998)

    Article  ADS  Google Scholar 

  8. B. Andersson et al., Z. Phys. C 43, 625 (1989).

    Article  ADS  Google Scholar 

  9. L. Lönnblad, Z. Phys. C 70, 107 (1996).

    Article  Google Scholar 

  10. H. Fritzsch, Phys. Lett. B 67, 216 (1977)

    ADS  Google Scholar 

  11. H. Fritzsch, Phys. Lett. B 86, 343 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Albrecht et al. (ARGUS Collab.), Phys. Lett B 162, 395 (1985).

    Article  ADS  Google Scholar 

  13. G. Gustafson, U. Petterson, and P. Zevas, Phys. Lett. B 209, 90 (1998).

    Article  ADS  Google Scholar 

  14. T. Sjöstrand and F. Zwirner, “Physics at LEP2”, in Yellow Report CERN 96–01, Ed. by G. Altarelli (CERN, 1996), Vol. 1, p. 198.

    Google Scholar 

  15. M. Bicer et al. (TLEP Design Study Working Group Collab.), J. High Energy Phys. 1401, 164 (2014).

    Article  ADS  Google Scholar 

  16. D. d’Enterria, in Proceedings of the 18th Lomonosov Conference on Elementary Particle Physics, Moscow, 2016, p. 182.

    Google Scholar 

  17. G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992)

    Article  ADS  Google Scholar 

  18. G. Corcella et al., CERN-TH/2000-284

  19. B. Weber, J. Phys. G 24, 2 (1998).

    Google Scholar 

  20. K. Geiger, Comput. Phys. Commun. 71, 15 (1992).

    Article  Google Scholar 

  21. J. Ellis and K. Geiger, Phys. Rev. D 54, 1967 (1996)

    Article  ADS  Google Scholar 

  22. J. Ellis and K. Geiger, Phys. Lett. B 404, 230 (1997).

    Article  ADS  Google Scholar 

  23. S. Schael et al. (ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collab.), Phys. Rep. 532, 119–244 (2013).

    Article  Google Scholar 

  24. J. Abdallah et al. (DELPHI Collab.), Eur. Phys. J. C 55, 1 (2008).

    Article  ADS  Google Scholar 

  25. P. Abreu, et al. (DELPHI Collab.), Eur. Phys. J. C 25, 493 (2002).

    Article  ADS  Google Scholar 

  26. N. Pukhaeva et al., in Proceedings of the 32nd International Symposium on Multiparticle Dynamics ISDM 2002, Alushta (2003), p. 42; hep-ex/0303002.

    Google Scholar 

  27. D. Duchesneau, Nucl. Phys. B 96, 13 (2001).

    Article  Google Scholar 

  28. J. Abdallah et al. (DELPHI Collab.), Eur. Phys. J. C 51, 249 (2007).

    Article  ADS  Google Scholar 

  29. S. Argyropoulos and T. Sjöstrand, LU TP–14–32; hepph/1407.6653v1.

  30. A. Edin, G. Ingelman, and J. Rathsman, Phys. Lett. B 366, 371 (1996); Z. Phys. C 75, 57 (1997).

    Article  ADS  Google Scholar 

  31. J. Christiansen and P. Skands, LU-TP–15–16; hepph/1505.01681v1.

  32. T. Sjöstrand, in Proceedings of the Conference on Parton Radiation and Fragmentation from LHC to FCC-ee, Geneva, 2017, p. 144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Pukhaeva.

Additional information

The article is published in the original.

Talk at the conference “New Trend in High Energy Physics”, Budva, 2–8 October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhaeva, N.E. Colour Reconnection in WW Events and the Models with It. Phys. Part. Nuclei Lett. 15, 492–498 (2018). https://doi.org/10.1134/S1547477118050138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118050138

Navigation