Skip to main content
Log in

Least Action Principle for Lorentz Force in Dilaton-Maxwell Electrodynamics

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The least action principle is established for the dynamics of a test particle in a dilaton-Maxwell background. These dynamics and background are invariant under the action of the dilatation transformation; explicit form of the corresponding generalization of the Lorentz force is established for the considered model. On a stationary background, we have found the integral of motion of the energy type. This integral is used to resolve the radial dynamics of test particles in a spherically symmetric electrostatic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Overduin and P. S. Wesson, Phys. Rep. 283, 303 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. S. Berman and D. C. Thompson, Phys. Rep. 566, 1 (2014).

    Article  ADS  Google Scholar 

  3. D. Youm, Phys. Rep. 316, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Boillat, J. Math. Phys. 11, 941 (1970).

    Article  ADS  Google Scholar 

  5. S. Deser and L. K. Morrison, J. Math. Phys. 11, 596 (1970).

    Article  ADS  Google Scholar 

  6. S. A. Gutierrez, A. L. Dudley, and J. F. Plebanski, J. Math. Phys. 22, 2835 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Righi and G. Venturi, Int. J. Theor. Phys. 21, 63 (1982).

    Article  Google Scholar 

  8. Yu. P. Rybakov, G. N. Shikin, and B. Saha, Int. J. Theor. Phys. 36, 97 (1997).

    Article  Google Scholar 

  9. V. I. Denisov, V. A. Sokolov, M. I. Vasili’ev, Phys. Rev. D 90, 023011 (2014).

    Article  ADS  Google Scholar 

  10. V. I. Denisov, I. P. Denisova, A. B. Pimenov, and V. A. Sokolov, Eur. Phys. J. C 76, 612 (2016).

    Article  ADS  Google Scholar 

  11. M. H. Mahzoon and N. Riazi, Int. J. Theor. Phys. 46, 823 (2007).

    Article  Google Scholar 

  12. A. Sheykhi and Z. Mahmoudi, Int. J. Theor. Phys. 55, 3875 (2016)

    Article  Google Scholar 

  13. A. Sheykhi and F. Shamsi, Int. J. Theor. Phys. 56, 916 (2017)

    Article  Google Scholar 

  14. S. I. Kruglov, Phys. Rev. D 94, 044026 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. I. Denisov, Phys. Rev. D 61, 036004 (2000).

    Article  ADS  Google Scholar 

  16. L. Labun and J. Rafelski, Phys. Rev. D 81, 065026 (2010).

    Article  ADS  Google Scholar 

  17. O. V. Kechkin and P. A. Mosharev, Int. J. Mod. Phys. A 31, 1650127 (2016).

    Article  ADS  Google Scholar 

  18. O. V. Kechkin and P. A. Mosharev, Mod. Phys. Lett. A 31, 1650169 (2016).

    Article  ADS  Google Scholar 

  19. A. Herrera-Aguilar and O. V. Kechkin, J. Math. Phys. 45, 216 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  20. O. V. Kechkin, Phys. Part. Nucl. 35, 383 (2004).

    Google Scholar 

  21. O. V. Kechkin, Phys. Rev. 39, 5446 (1998).

    MathSciNet  Google Scholar 

  22. A. Herrera-Aguilar and O. Kechkin, Phys. Rev. D 59, 124006 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. O. V. Kechkin, Phys. Lett. B 523, 323 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  24. O. V. Kechkin, Phys. Lett. B 522, 166 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Ehlers, in Les Theories Relativistes de la Gravitation (CNRS, Paris, 1959), p. 275.

    Google Scholar 

  26. F. J. Ernst, Phys. Rev. 167, 1175 (1968).

    Article  ADS  Google Scholar 

  27. F. J. Ernst, Phys. Rev. 168, 1415 (1968).

    Article  ADS  Google Scholar 

  28. P. O. Mazur, Acta Phys. Polon. B 14, 219 (1983).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Denisova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, I.P., Kechkin, O.V. Least Action Principle for Lorentz Force in Dilaton-Maxwell Electrodynamics. Phys. Part. Nuclei Lett. 15, 464–468 (2018). https://doi.org/10.1134/S1547477118050059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118050059

Keywords

Navigation