Skip to main content
Log in

Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called “Tsallis-temperature”. It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann–Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hanel and S. Thurner, Europhys. Lett. 93, 20006 (2011).

    Article  ADS  Google Scholar 

  2. R. Hanel and S. Thurner, Europhys. Lett. 96, 50003 (2011).

    Article  ADS  Google Scholar 

  3. F. Karsch, K. Redlich, and A. Tawfik, Eur. Phys. J. C 29, 549 (2003).

    Article  ADS  Google Scholar 

  4. F. Karsch, K. Redlich, and A. Tawfik, Phys. Lett. B 571, 67 (2003).

    Article  ADS  Google Scholar 

  5. K. Redlich, F. Karsch, and A. Tawfik, J. Phys. G 30, S1271 (2004).

    Article  ADS  Google Scholar 

  6. A. Tawfik, Phys. Rev. D 71, 054502 (2005).

    Article  ADS  Google Scholar 

  7. A. Tawfik, J. Phys. G 31, S1105 (2005).

    Article  ADS  Google Scholar 

  8. R. Hagedorn, Nuovo Cimento, Suppl. 2, 147 (1965).

    Google Scholar 

  9. R. Hagedorn, Nuovo Cim. A 56, 1027 (1968).

    Article  ADS  Google Scholar 

  10. R. Venugopalan and M. Prakash, Nucl. Phys. A 546, 718 (1992).

    Article  ADS  Google Scholar 

  11. A. Tawfik, Nucl. Phys. A 764, 387 (2006).

    Article  ADS  Google Scholar 

  12. A. Tawfik, Europhys. Lett. 75, 420 (2006).

    Article  ADS  Google Scholar 

  13. A. Tawfik, Int. J. Theor. Phys. 51, 1396 (2012).

    Article  Google Scholar 

  14. A. Tawfik, Nucl. Phys. A 859, 63 (2011).

    Article  ADS  Google Scholar 

  15. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  16. D. Prato and C. Tsallis, Phys. Rev. E 60, 2398 (1999).

    Article  ADS  Google Scholar 

  17. C. Tsallis, Milan J. Math. 73, 145 (2005).

    Article  MathSciNet  Google Scholar 

  18. J. Cleymans and D. Worku, J. Phys. G 39, 025006 (2012).

    Article  ADS  Google Scholar 

  19. M. D. Azmi and J. Cleymans, J. Phys. G 41, 065001 (2014).

    Article  ADS  Google Scholar 

  20. C. Beck, Phys. A (Amsterdam, Neth.) 286, 164 (2000).

    Article  ADS  Google Scholar 

  21. C. Beck, Phys. A (Amsterdam, Neth.) 331, 173 (2004).

    Article  ADS  Google Scholar 

  22. C. Beck, Eur. Phys. J. A 40, 267 (2009).

    Article  ADS  Google Scholar 

  23. Abdel Nasser Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Megias, D. P. Menezes, and A. Deppman, Phys. A (Amsterdam, Neth.) 421, 15 (2015).

    Article  Google Scholar 

  25. P. Doukhan, Mixing Properties and Examples, Vol. 85 of Lecture Notes in Statistics (Springer, Berlin, Heidelberg, 1994).

    MATH  Google Scholar 

  26. H. Dehling, M. Denker, and W. Philipp, Ann. Prob. 14, 1359 (1986).

    Article  Google Scholar 

  27. L. G. Moyano, C. Tsallis, M. Gell-Mann, Europhys. Lett. 73, 813 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Tsallis and D. J. Bukman, Phys. Rev. E 54, R2197 1996.

    Article  ADS  Google Scholar 

  29. A. Deppman, Phys. A (Amsterdam, Neth.) 391, 6380 (2012).

    Article  ADS  Google Scholar 

  30. I. Sena and A. Deppman, AIP Conf. Proc. 1520, 172 (2013).

    Article  ADS  Google Scholar 

  31. A. Deppmann, J. Phys. G 41, 055108 (2014).

    Article  ADS  Google Scholar 

  32. I. Bediaga, E. M. F. Curado, and J. M. de Miranda, Phys. A (Amsterdam, Neth.) 286, 156 (2000).

    Article  ADS  Google Scholar 

  33. S. Borsanyi, Z. Fodor, Ch. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, Phys. Lett. B 730, 99 (2014).

    Article  ADS  Google Scholar 

  34. A. Deppman, Phys. Rev. D 93, 054001 (2016).

    Article  ADS  Google Scholar 

  35. T. S. Biro, G. G. Barnafoldi, and P. Van, Eur. Phys. J. A 49, 110 (2013).

    Article  ADS  Google Scholar 

  36. T. S. Biro, G. G. Barnafoldi, and P. Van, Phys. A (Amsterdam, Neth.) 417, 215 (2015).

    Article  ADS  Google Scholar 

  37. A. Renyi, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1961, p.547.

  38. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

    Article  Google Scholar 

  39. A. I. Khinchin, Mathematical Foundations Information Theory (Dover, New York, 1957).

    MATH  Google Scholar 

  40. F. Buyukkilic and D. Demirhan, Phys. Lett. A 181, 24 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  41. F. Buyukkilic, D. Demirhan, and A. Gulec, Phys. Lett. A 197, 209 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  42. U. Tirnakli, F. Buyukkilic, and D. Demirhan, Phys. Lett. A 245, 62 (1998).

    Article  ADS  Google Scholar 

  43. C. Tsallis, M. Gell-Mann, and Y. Sato, Proc. Natl. Acad. Sci. 102, 15377 (2005).

    Article  ADS  Google Scholar 

  44. R. Hanel, S. Thurner, and M. Gell-Mann, Proc. Natl. Acad. Sci. 109, 19151 (2012).

    Article  ADS  Google Scholar 

  45. J. Glimm and A. M. Jaffe, Commun. Math. Phys. 51, 1 (1976).

    Article  ADS  Google Scholar 

  46. Zhen Cao, Yi Gao, and R. C. Hwa, Z. Phys. C 72, 661 (1996).

    ADS  Google Scholar 

  47. A. Bialas, Phys. Lett. B 579, 31 (2004).

    Article  ADS  Google Scholar 

  48. T. S. Biro, P. Levai, and J. Zimanyi, Phys. Lett. B 347, 6 (1995).

    Article  ADS  Google Scholar 

  49. J. Zimanyi, T. S. Biro, T. Csorgo, and P. Levai, Heavy Ion Phys. 4, 15 (1996).

    Google Scholar 

  50. T. S. Biro, P. Levai, and J. Zimanyi, AIP Conf. Proc. 340, 405 (1995).

    Article  ADS  Google Scholar 

  51. J. Zimanyi, T. S. Biro, T. Csorgo, and P. Levai, Phys. Lett. B 472, 243 (2000).

    Article  ADS  Google Scholar 

  52. T. S. Biro, K. M. Shen, and B. W. Zhang, Phys. A (Amsterdam, Neth.) 428, 410 (2015).

    Article  ADS  Google Scholar 

  53. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  Google Scholar 

  54. P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  55. L. Marques, J. Cleymans, and A. Deppman, Phys. Rev. D 91, 054025 (2015).

    Article  ADS  Google Scholar 

  56. M. Rybczyski and Z. Wodarczyk, Eur. Phys. J. C 74, 2785 (2014).

    Article  ADS  Google Scholar 

  57. A. Bialas, Phys. Lett. B 747, 190 (2015).

    Article  ADS  Google Scholar 

  58. A. N. Tawfik and E. Abbas, Phys. Part. Nucl. Lett. 12, 521 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Nasser Tawfik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A.N. Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics. Phys. Part. Nuclei Lett. 15, 199–209 (2018). https://doi.org/10.1134/S1547477118030196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118030196

Keywords

Navigation