Physics of Particles and Nuclei Letters

, Volume 15, Issue 2, pp 143–147 | Cite as

Single Folding Optical Potential for Elastic Scattering of Protons from 14N and 16O in a Wide Range of Energies

  • Sh. Hamada
Physics of Elementary Particles and Atomic Nuclei. Theory


Available experimental data for protons elastically scattered from 14N and 16O target nuclei are reanalyzed within the framework of single folding optical potential (SFOP) model. In this model, the real part of the potential is derived on the basis of single folding potential. The renormalization factor N r is extracted for the two aforementioned nuclear systems. Theoretical calculations fairly reproduce the experimental data in the whole angular range. Energy dependence of real and imaginary volume integrals as well as reaction cross sections are discussed.


optical model folding potential elastic scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Maxson, “16O(p,α)13N angular distributions at 13.5–18.1 MeV,” Phys. Rev. 123, 1304 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    C. Hu, K. Kikuchi, S. Kobayashi, K. Matsuda, Y. Nagahara, Y. Oda, N. Takano, M. Takeda, and T. Yamazaki, “Elastic and inelastic scattering of protons from Ti, Cr, Ni, Zn, and O at 8 to 14 MeV,” J. Phys. Soc. Jpn. 14, 861 (1959).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Cameron, J. R. Richardson, W. T. T. Van Oers, and J. W. Verba, “Studies of the energy dependence of P–16O interactions between 20 and 50 MeV. I. Measurements of the differential cross sections of protons elastically scattered by 16O at 23.4, 24.5, 27.3, 30.1, 34.1, 36.8, 39.7, 43.1, and 46.1 MeV,” Phys. Rev. 167, 908 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    C. C. Kim, S. M. Bunch, D. W. Devins, and H. H. Forster, “Elastic scattering of 31 MeV protons from 2H, 3He, 14N and 16O,” Nucl. Phys. A 58, 32 (1964).CrossRefGoogle Scholar
  5. 5.
    G. M. Carwley and G. T. Garvey, “Inelastic scattering in the 2s-1d shell. I. Even-A nuclei,” Phys. Rev. 160, 981 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    H. Sakaguchi, M. Nakamura, K. Hatanaka, A. Goto, T. Noro, F. Ohtani, H. Sakamoto, and S. Kobayashi, “65 MeV polarized proton elastic scattering and the effective two-body interaction range,” Phys. Lett. B 89, 40 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    H. Ohnuma, N. Hoshino, K. Ieki, M. Iwase, H. Shimizu, and H. Toyokawa, “The 16O(p,p') reaction at 35 MeV,” Nucl. Phys. A 514, 273 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Fannon, E. J. Burge, and D. A. Smith, “Elastic and inelastic scattering of 50 MeV protons by 12C and 16O,” Nucl. Phys. A 97, 263 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    O. Karban, P. D. Greaves, V. Hnizdo, J. Lowe, N. Berovic, H. Wojciechowski, and G. W. Greenlees, “The elastic scattering of protons by 16O in the energy range 16–30 MeV,” Nucl. Phys. A 132, 548 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Austin, P. J. Locard, S. N. Bunker, J. M. Cameron, R. J. Reginald, J. W. Verba, and W. T. H. van Oers, “Inelastic scattering of protons from 16O and spindependent part of the effective interaction,” Phys. Rev. C 3, 1514 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    H. F. Lutz, D. W. Heikkinen, and W. Bartolini, “Scattering of protons by 14N in the energy range 17 to 26.5 MeV,” Nucl. Phys. A 198, 257 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    L. F. Hansen, S. M. Grimes, J. L. Kammerdiener, and V. A. Madsen, “Analysis of inelastic proton scattering from 14N between 8.60 and 26.0 MeV,” Phys. Rev. C 8, 2072 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    T. H. Curtis, H. F. Lutz, D. W. Heikkinen, and W. Bartolini, “Proton induced reactions on mass-14 nuclei,” Nucl. Phys. A 165, 19 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    A. J. Ferguson, R. L. Clarke, and H. E. Gove, “Elastic scattering of protons by nitrogen,” Phys. Rev. 115, 1655 (1959).ADSCrossRefGoogle Scholar
  15. 15.
    E. Fabrici, S. Micheletti, M. Pignanelli, F. G. Resmini, R. de Leo, G. D’Erasmo, and A. Pantaleo, “Proton elastic scattering on light nuclei. II. Nuclear structure effects,” Phys. Rev. C 21, 844 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    J. Cook, “DFPOT–a program for the calculation of double folded potentials,” Comput. Phys. Commun. 25, 125 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    G. R. Satchler and W. G. Love, “Folding model potentials from realistic interactions for heavy-ion scattering,” Phys. Rep. 55, 183 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    H. de Vries, C. W. de Jager, and C. de Vries, “Nuclear charge density distribution parameters from elastic electron scattering,” At. Data Nucl. Data Tables 36, 495 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    I. J. Thompson, “Coupled reaction channels calculations in nuclear physics,” Comput. Phys. Rep. 7, 167 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations