Physics of Particles and Nuclei Letters

, Volume 14, Issue 6, pp 930–938 | Cite as

The compensation of the noise due to angular oscillations of the laser beam in the Precision Laser Inclinometer

  • N. Azaryan
  • J. Budagov
  • M. LyablinEmail author
  • A. Pluzhnikov
  • B. Di Girolamo
  • J.-Ch. Gayde
  • D. Mergelkuhl
Methods of Physical Experiment


An experimental method for the compensation of the noise originated by the laser ray angular oscillations was proposed and experimentally proved for the Precision Laser Inclinometer (PLI). The PLI noise spectral density was reduced by factor 30× and reached 10–8 rad/Hz1/2 level at the frequency of 5 × 10–5 Hz. The angular noise of a laser ray leaving the one-mode optical fiber in the vacuum and in stabilized temperature conditions has been measured. The amplitude of the oscillations for one-day observation reached 0.46 μrad.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Batusov, J. Budagov, and M. Lyablin, “A laser sensor of a seismic slope of the Earth surface,” Phys. Part. Nucl. Lett. 10, 43–48 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Budagov et al., “The search for and registration of superweak angular ground motions,” JINR Commun. E18-2013-107 (JINR, Dubna, 2013).Google Scholar
  3. 3.
    N. Azaryan et al., “The precision laser inclinometer long-term sensitivity in thermo-stabilized conditions,” Report Presented at CLIC Workshop 2015, Jan. 26–30, 2015, CERN, JINR Preprint E13-2015-35 (JINR, Dubna, 2015).Google Scholar
  4. 4.
    N. Azaryan, V. Batusov, J. Budagov, V. Glagolev, M. Lyablin, G. Trubnikov, G. Shirkov, J.-Ch. Gayde, B. di Girolamo, D. Mergelkuhl, and M. Nessi, “The precision laser inclinometer long-term measurement in thermo-stabilized conditions (first experimental data),” Phys. Part. Nucl. Lett. 12, 532–535 (2015).CrossRefGoogle Scholar
  5. 5.
    O. Iwasinska-Kowalska, “A system for precise laser beam angular steering,” Meas. Syst. 21, 27–36 (2014).Google Scholar
  6. 6.
    I. Buske et al., “A real–time sub–µrad laser beam tracking system,” Proc. SPIE 6738, 67380–1–9 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Zhu et al., “A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift,” Sens. Actuators A 167, 495–501 (2011).CrossRefGoogle Scholar
  8. 8.
    Y. Yin et al., “Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials,” Sens. Actuators A 171, 332–339 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Germann and J. Braccio, “Fine-steering mirror technology supports 10 nanoradian system,” Opt. Eng. 29, 1351–1359 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    N. Rijnvelda et al., “A tip/tilt mirror with large dynamic range for the ESO VLT four laser guide star facility,” Proc. SPIE 8125, 812503P1 (2011)Google Scholar
  11. 11.
    Qingkun Zhou et al., “Goldenberg design of fast steering mirror systems for precision laser beams steering,” in Proceedings of the ROSE 2008, IEEE International Workshop on Robotic and Sensors Environments, Ottawa, Canada, Oct. 17–18, 2008.Google Scholar
  12. 12.
    R. W. Cochran and R. H. Vassar, “Fast steering mirrors in optical control systems,” SPIE Proc. 1303, 245–251 (1990).ADSCrossRefGoogle Scholar
  13. 13. Scholar
  14. 14.
    D. Dragan, “Hysteresis in piezoelectric and ferroelectric materials,” in The Science of Hysteresis, Ed. by I. Mayergoyz and G. Bertotti (Elsevier, Amsterdam, 2005), Vol. 3, Chap.4.Google Scholar
  15. 15.
    V. Batusov et al., “Photodetector noise limitations of the laser ray space localization precision,” JINR Preprint E13-2008-90 (JINR, Dubna, 2008).Google Scholar
  16. 16.
    R. Hedding and R. A. Lewis, “Fast steering mirror design and performance for stabilization and single axis scanning,” Proc. SPIE 1304, 14–24 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Kwee et al., “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    G. Stern et al., “Experiments of laser pointing stability in air and in vacuum to validate micrometric positioning sensor,” in Proceedings of 5th International Particle Accelerator Conference IPAC 2014, Dresden, Germany, pp. 1793–1795.Google Scholar
  19. 19.
    J. Gray, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    N. Azaryan et al., “Comparative analysis of earthquakes data recorded by the innovative precision laser inclinometer instruments and the classic hydrostatic level system,” Phys. Part. Nucl. Lett. 14, 480–492 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Budagov, V. Glagolev, M. Lyablin, G. Shirkov, and H. Mainaud Durand, “Air temperature stabilization in the thermally isolated optical laboratory,” Phys. Part. Nucl. Lett. 11, 294–298 (2014).CrossRefGoogle Scholar
  22. 22.
    N. Azaryan et al., “The innovative method of high accuracy interferometric calibration of the precision laser inclinometer,” Phys. Part. Nucl. Lett. 14, 112–122 (2017).CrossRefGoogle Scholar
  23. 23.
    N. Azaryan et al., “The monitoring of the effects of Earth surface inclination with the precision laser inclinometer for high luminosity colliders,” in Proceedings of the RuPAC 2016, 25th Russian Particle Accelerator Conference, Nov. 21–25, 2016, St. Petersburg.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. Azaryan
    • 1
  • J. Budagov
    • 1
  • M. Lyablin
    • 1
    Email author
  • A. Pluzhnikov
    • 1
  • B. Di Girolamo
    • 2
  • J.-Ch. Gayde
    • 2
  • D. Mergelkuhl
    • 2
  1. 1.Joint Institute for the Nuclear ResearchDubnaRussia
  2. 2.CERNGenevaSwitzerland

Personalised recommendations