Skip to main content
Log in

Active-to-absorbing phase transition subjected to the velocity fluctuations in the frozen limit case

Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The directed bond percolation process is studied in the presence of compressible velocity fluctuations with long-range correlations. We discuss a construction of a field theoretic action and a way of obtaining its large scale properties using the perturbative renormalization group. The most interesting results for the frozen velocity limit are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior (Cambridge Univ. Press, New York, 2014).

    Google Scholar 

  2. M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium Phase Transitions, Vol. 1: Absorbing Phase Transitions (Springer, Dordrecht, 2008).

    MATH  Google Scholar 

  3. H. K. Janssen and U. C. Täuber, “The field theory approach to percolation processes,” Ann. Phys. (N.Y.) 315, 147–192 (2005); arXiv:cond-mat/0409670.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. H. K. Janssen, “On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state,” Z. Phys. B: Condens. Matter 42, 151–154 (1981).

    Article  ADS  Google Scholar 

  5. H. K. Janssen, “Renormalized field theory of the Gribov process with quenched disorder,” Phys. Rev. E 55, 6253–6256 (1997).

    Article  ADS  Google Scholar 

  6. H. Hinrichsen, “Non-equilibrium phase transitions with long-range interactions,” J. Stat. Mech.: Theor. Exp., 07066 (2007); arXiv:cond-mat/0702169.

  7. K. A. Takeuchi, M. Kuroda, H. Chat, and M. Sano, “Directed percolation criticality in turbulent liquid crystals,” Phys. Rev. Lett. 99, 234503 (2007); arXiv:0706.4151 [cond-mat.stat-mech].

    Article  ADS  Google Scholar 

  8. N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field,” Phys. Rev. E 60, 6691–6707 (1999); arXiv:chaodyn/ 9808011.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow,” Phys. D (Amsterdam) 144, 370–386 (2000); arXiv:chaodyn/ 9907018.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. N. V. Antonov, V. I. Iglovikov, and A. S. Kapustin, “Effects of turbulent mixing on the nonequilibrium critical behaviour,” J. Phys. A: Math. Theor. 42, 135001 (2008); arXiv:0808.0076 [cond-mat.stat-mech].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. N. V. Antonov and A. S. Kapustin, “Effects of turbulent mixing on critical behaviour in the presence of compressibility: renormalization group analysis of two models,” J. Phys. A: Math. Theor. 43, 405001 (2010); arXiv:1006.3133 [cond-mat.stat-mech].

    Article  MathSciNet  MATH  Google Scholar 

  12. N. V. Antonov, A. S. Kapustin, and A. V. Malyshev, “Effects of turbulent transfer on the critical behavior,” Theor. Math. Phys. 169, 1470–1480 (2011); arXiv:1012.4317 [cond-mat.stat-mech].

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Dančo, H. Hnatič, T. Lučivjanský, and L. Mižišin, “Critical behavior of percolation process influenced by a random velocity field: one-loop approximation,” Theor. Math. Phys. 176, 898–905 (2013); arXiv:1302.1006 [nlin.CD].

    Article  MathSciNet  MATH  Google Scholar 

  14. N. V. Antonov, H. Hnatič, A. S. Kapustin, T. Lučivjanský, and L. Mižišin, “Gribov process advected by the synthetic compressible velocity ensemble: renormalization group approach,” Theor. Math. Phys. 190, 323–334 (2017); arXiv:1603.00310 [cond-mat.statmech].

    Article  MATH  Google Scholar 

  15. N. V. Antonov, H. Hnatič, A. S. Kapustin, T. Lučivjanský, and L. Mižišin, “Directed percolation process in the presence of velocity fluctuations: effect of compressibility and finite correlation time,” Phys. Rev. E 93, 012151 (2016); arXiv:1602.00642 [cond-mat.statmech].

    Article  ADS  Google Scholar 

  16. J. Honkonen and E. Karjalainen, “Diffusion in a random medium with long-range correlations,” J. Phys. A: Math. Gen. 21, 4217 (1988).

    Article  ADS  Google Scholar 

  17. D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 2005).

    Book  MATH  Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Univ. Press, Oxford, 1996).

    MATH  Google Scholar 

  19. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman Hall, CRC, Boca Raton, 2004).

    Book  MATH  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1959).

    Google Scholar 

  21. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, Cambridge, 1995).

    MATH  Google Scholar 

  22. K. Gawedzki and M. Vergasssola, “Phase transition in the passive scalar advection,” Phys. D (Amsterdam) 138, 63–90 (1999); arXiv:cond-mat/9811399.

    Article  ADS  MathSciNet  Google Scholar 

  23. N. V. Antonov, M. Yu. Nalimov, and A. A. Udalov, “Renormalization group in the problem of fully developed turbulence of a compressible fluid,” Theor. Math. Phys. 110, 305–315 (1997).

    Article  MATH  Google Scholar 

  24. N. V. Antonov and M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the navier-stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy,” Phys. Rev. E 90, 063016 (2014); arXiv:1410.1262.

    Article  ADS  Google Scholar 

  25. N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and T. Lučivjanský, “Turbulent compressible fluid: renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields,” Phys. Rev. E 95, 033120 (2017); arXiv:1611.00327.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Hnatich, M., Kapustin, A.S. et al. Active-to-absorbing phase transition subjected to the velocity fluctuations in the frozen limit case. Phys. Part. Nuclei Lett. 14, 944–952 (2017). https://doi.org/10.1134/S154747711706005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711706005X

Navigation