Skip to main content
Log in

Validation of Monte Carlo simulation of 6 MV photon beam produced by Varian Clinac 2100 linear accelerator using BEAMnrc code and DOSXYZnrc code

  • Physics and Technique of Accelerators
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The Monte Carlo model for the photon-beam output from the Varian Clinac 2100 linear accelerator was validated to compare the calculated to measured PDD and beam dose profiles The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The objective of this study is to build a Monte Carlo geometry of Varian Clinac 2100 linear accelerator as realistically as possible. The Monte Carlo codes used in this work were the BEAMnrc code to simulate the photons beam and the DOSXYZnrc code to examinate the absorbed dose in the water phantom. We have calculated percentage depth dose (PDD) and beam profiles of the 6 MV photon beam for the 6 × 6 cm2, 10 × 10 cm2 and 15 × 15 cm2 field sizes. We have used the gamma index technique for the quantitative evaluation to compare the measured and calculated distributions. Good agreement was found between calculated PDD and beam profile compared to measured data. The comparison was evaluated using the gamma index method and the criterions were 3% for dose difference and 3 mm for distance to agreement. The gamma index acceptance rate was more than 97% of both distribution comparisons PDDs and dose profiles and our results were more developed and accurate. The Varian Clinac 2100 linear accelerator was accurately modeled using Monte Carlo codes: BEAMnrc and DOSXYZnrc codes package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mayles, A. Nahum, and J. C. Rosenwald, Handbook of Radiotherapy Physics Theory and Practice (Taylor Francis Group, USA, 2007), pp. 452–480.

    Book  Google Scholar 

  2. D. S. Chang, F. D. Lasley, I. J. Das, M. S. Mendonca, and J. R. Dynlacht, Basic Radiotherapy Physics and Biology (Springer, New York, 2014), pp. 77–92.

    Google Scholar 

  3. E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students (IAEA, Vienna, 2005), pp. 161–216.

    Google Scholar 

  4. S. Jayaraman and L. H. Lanzl, Clinical Radiotherapy Physics (Springer, Berlin, 2004), pp. 189–229.

    Book  Google Scholar 

  5. E. B. Podgorsak, Radiation Physics for Medical Physicists (Springer, Heidelberg, 2010), pp. 277–374.

    Book  Google Scholar 

  6. International Atomic Energy Agency, “Absorbed dose determination in external beam radiotherapy,” Tech. Rep. Ser., No. 398 (Vienna, 2000), pp. 110–133.

  7. D. W. O. Rogers, B. Walters, and I. Kawrakow, “BEAMnrc users manual,” NRCC Report (Ottawa, 2013), pp. 12–254.

    Google Scholar 

  8. B. Walters, I. Kawrakow, and D. W. O. Rogers, “DOSXYZnrc users manual,” NRCC Report (Ottawa, 2013), pp. 9–103.

    Google Scholar 

  9. D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, B. Walters, and H. E. Mainegra, “NRC user codes for EGSnrc,” NRCC Report (Ottawa, 2013), pp. 6–83.

  10. H. C. E. McGowan, B. A. Faddegon, and C. M. Ma, STATDOSE for 3D Dose Distributions (Natl. Res. Council of Canada, Ottawa, 2013), pp. 5–10.

  11. R. Popa, M. Dumitrache, and A. Ciovlica, “A comparative study on 6 MV photon beam percentage depth dose of VARIAN clinac 2300 C/D, ELEKTA synergy platform, and Siemens primus linacs,” Roman. Rep. Phys. 64, 997–1010 (2012).

    Google Scholar 

  12. A. Mesbahi, M. Fix, M. Allahverdi, E. Grein, and H. Garaati, “Monte Carlo calculation of varian 2300 C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements,” Appl. Radiat. Isotopes 62, 469–477 (2005).

    Article  Google Scholar 

  13. L. Apipunyasopon, S. Srisatit, and N. Phaisangittisakul, “An investigation of the depth dose in the buildup region, and surface dose for a 6 MV therapeutic photon beam: Monte Carlo simulation and measurements,” J. Radiat. Res. 54, 374–382 (2013).

    Article  Google Scholar 

  14. D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656–661 (1998).

    Article  Google Scholar 

  15. K. F. Michael, J. K. Paul, and V. S. Jeffrey, “Photonbeam subsource sensitivity to the initial electron-beam parameters,” Med. Phys. 32, 1164–1175 (2005).

    Article  Google Scholar 

  16. K. Aljarrah, G. C. Sharp, T. Neicu, and S. B. Jiang, “Determination of the initial beam parameters in Monte Carlo linac simulation,” Med. Phys. 33, 850–858 (2006).

    Article  Google Scholar 

  17. M. Asghar, M. Parinaz, K. Ahmad, and F. Alireza, “Dosimetric properties of a flattening filter-free 6-MV photon beam: a Monte Carlo study,” Radiat. Med. 25, 315–324 (2007).

    Article  Google Scholar 

  18. A. Mesbahi, “Development a simple point source model for elekta SL-25 linear accelerator using MCNP4C Monte Carlo code,” Iran. J. Radiat. Res. 4, 7–14 (2006).

    Google Scholar 

  19. D. Sheikh-Bagheri and D. W. Rogers, “Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters,” Med. Phys. 29, 379–390 (2002).

    Article  Google Scholar 

  20. M. Oprea, C. Constantin, D. Mihailescu, and C. Borcia, “A Monte Carlo investigation of the influence of initial electron beam characteristics on the absorbed dose distributions obtained with a 9 MeV IORT accelerator,” U.P. B. Sci. Bull., Ser. A 74, 153–166 (2012).

    Google Scholar 

  21. F. Verhaegen and J. Seuntjens, “Monte Carlo modelling of external radiotherapy photon beams,” Phys. Med. Biol. 48, 3401–3458 (2003).

    Article  Google Scholar 

  22. O. Chibani, B. Moftah, and C. M. Ma, “On Monte Carlo modeling of megavoltage photon beams: a revisited study on the sensitivity of beam parameters,” Med. Phys. 38, 188–201 (2011).

    Article  Google Scholar 

  23. R. Mohan, C. Chui, and L. Lidofsky, “Energy and angular distributions of photons from medical linear accelerators,” Med. Phys. 12, 592–590 (1985).

    Article  Google Scholar 

  24. E. L. Chaney, T. J. Cullip, and T. A. Gabriel, “A Monte Carlo study of accelerator head scatter,” Med. Phys. 21, 1383–1390 (1994).

    Article  Google Scholar 

  25. D. M. Lovelock, C. S. Chui, and R. Mohan, “A Monte Carlo model of photon beams used in radiation therapy,” Med. Phys. 22, 1387–1394 (1995).

    Article  Google Scholar 

  26. H. H. Liu, T. R. Mackie, and E. C. McCullough, “A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage X-ray beams,” Med. Phys. 24, 1960–1974 (1997).

    Article  Google Scholar 

  27. B. Libby, J. Siebers, and R. Mohan, “Validation of Monte Carlo generated phase-space descriptions of medical linear accelerators,” Med. Phys. 26, 1476–1483 (1999).

    Article  Google Scholar 

  28. C. M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, K. Forster, and A. L. Boyer, “Clinical implementation of a Monte Carlo treatment planning system,” Med. Phys. 26, 2133–2143 (1999).

    Article  Google Scholar 

  29. A. E. Schach von Wittenau, L. J. Cox, P. M. Bergstrom, W. P. Chandler, C. L. Hartmann Siantar, and R. Mohan, “Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space,” Med. Phys. 26, 1196–2110 (1999).

    Article  Google Scholar 

  30. J. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, “Comparison of EGS4 and MCNP4b Monte Carlo codes for generation of photon phase space distributions for a varian 2100C,” Phys. Med. Biol. 44, 3009–3026 (1999).

    Article  Google Scholar 

  31. I. Chetty, J. J. DeMarco, and T. D. Solberg, “A virtual source model for Monte Carlo modeling of arbitrary intensity distributions,” Med. Phys. 27, 166–172 (2000).

    Article  Google Scholar 

  32. S. B. Jiang, A. Kapur, J. Li, T. Pawlicki, and C. M. Ma, “Photon beam characterization and modelling for Monte Carlo treatment planning,” Phys. Med. Biol. 45, 411–427 (2000).

    Article  Google Scholar 

  33. W. van der Zee and J. Welleweerd, “Calculating photon beam characteristics with Monte Carlo techniques,” Med. Phys. 26, 1883–1892 (1999).

    Article  Google Scholar 

  34. C. M. Ma, “Characterization of computer simulated radiotherapy beams for Monte-Carlo treatment planning,” Radiat. Phys. Chem. 53, 329–344 (1998).

    Article  ADS  Google Scholar 

  35. M. K. Fix, H. Keller, P. Ruegsegger, and E. J. Born, “Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy,” Med. Phys. 27, 2739–2747 (2000).

    Article  Google Scholar 

  36. M. K. Fix, M. Stampanoni, P. Manser, E. J. Born, R. Mini, and P. Ruegsegger, “A multiple source model for 6 MV photon beam dose calculations using Monte Carlo,” Phys. Med. Biol. 46, 1407–1427 (2001).

    Article  Google Scholar 

  37. M. K. Fix, P. Manser, E. J. Born, R. Mini, and P. Ruegsegger, “Monte Carlo simulation of a dynamic MLC based on a multiple source model,” Phys. Med. Biol. 46, 3241–3257 (2001).

    Article  Google Scholar 

  38. M. K. Fix, P. J. Keall, K. Dawson, and J. V. Siebers, “Monte Carlo source model for photon beam radiotherapy: photon source characteristics,” Med. Phys. 31, 3106–3121 (2004).

    Article  Google Scholar 

  39. A. E. Schach von Wittenau, P. M. Bergstrom, and L. J. Cox, “Patient dependent beam-modifier physics in Monte Carlo photon dose calculations,” Med. Phys. 27, 935–947 (2000).

    Article  Google Scholar 

  40. C. L. Hartmann Siantar, R. S. Walling, T. P. Daly, B. Faddegon, N. Albright, P. Bergstrom, A. F. Bielajew, C. Chuang, D. Garrett, R. K. House, D. Knapp, D. J. Wieczorek, and L. J. Verhey, “Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom,” Med. Phys. 28, 1322–1337 (2001).

    Article  Google Scholar 

  41. P. Francescon, C. Cavedon, S. Reccanello, and S. Cora, “Photon dose calculation of a three-dimensional treatment planning system compared to the Monte Carlo code BEAM,” Med. Phys. 27, 1579–1587 (2000).

    Article  Google Scholar 

  42. D. Sheikh-Bagheri and D. W. Rogers, “Monte Carlo calculation of ninemegavoltage photon beam spectra using the BEAM code,” Med. Phys. 29, 391–402 (2002).

    Article  Google Scholar 

  43. P. J. Keall, J. V. Siebers, B. Libby, and R. Mohan, “Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set,” Med. Phys. 30, 574–582 (2003).

    Article  Google Scholar 

  44. R. D. Lewis, S. J. Ryde, D. A. Hancock, and C. J. Evans, “An MCNP-based model of a linear accelerator X-ray beam,” Phys. Med. Biol. 44, 1219–1230 (1999).

    Article  Google Scholar 

  45. B. T. Sichani and M. Sohrabpour, “Monte Carlo dose calculations for radiotherapy machines: theratron 780-C teletherapy case study,” Phys. Med. Biol. 49, 807–818 (2004).

    Article  Google Scholar 

  46. M. Dumitrache and A. Tanase, “A comparative study on 6 MV photon beam percentage depth dose of VARIAN clinac 2300 C/D, ELEKTA synergy platform, and Siemens primus linacs,” in Proceedings of the European Medical Physics and Engineering Conference, Sofia, October 18–20, 2012.

    Google Scholar 

  47. R. Popa, M. Dumitrache, and A. Ciovlica, “A comparative study on 6 mV photon beam percentage depth dose of VARIAN clinac 2300 C/D, ELEKTA synergy platform, and Siemens primus linacs,” Roman. Rep. Phys. 64, 997–1010 (2012).

    Google Scholar 

  48. A. Mesbahi, P. Mehnati, and A. Keshtkar, “A comparative Monte Carlo study on 6 MV photon beam characteristics of VARIAN 21EX and ELEKTA SL-25 linacs,” Iron. J. Radiat. Res. 5, 23–30 (2007).

    Google Scholar 

  49. A. Mesbahi, M. Fix, M. Allahverdi, E. Grein, and H. Garaati, “Monte Carlo calculation of varian 2300 C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements,” Appl. Radiat. Isotopes 62, 469–477 (2005).

    Article  Google Scholar 

  50. L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J.-N. Badel, and D. Sarrut, “Simulation of a 6 MV elekta precise linac photon beam using GATE/GEANT4,” Phys. Med. Biol. 56, 903–918 (2011).

    Article  Google Scholar 

  51. J. El Bakkali and T. El Bardouni, “Validation of Monte Carlo Geant4 code for a 6 MV varian linac,” J. King Saud Univ., Sci. 29, 106–113 (2017).

    Article  Google Scholar 

  52. Y. Tayalati, S. Didi, M. Zerfaoui, and A. Moussaa, “Monte Carlo simulation of 6MV elekta synergy platform linac photon beam using Gate/Geant4,” arXiv:13090758 (2013).

    Google Scholar 

  53. S. Didi, A. Moussa, Y. Tayalati, and M. Zerfaoui, “Simulation of the 6 MV elekta synergy platform linac photon beam using Geant4 application for tomographic emission,” J. Med. Phys. 40, 136–143 (2015).

    Article  Google Scholar 

  54. D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 2455–2464 (2003).

    Article  Google Scholar 

  55. X. D. George, “Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a varian 2100EX accelerator,” Phys. Med. Biol. 47, 1025–1046 (2002).

    Article  Google Scholar 

  56. M. Aljamal and A. Zakaria, “Monte Carlo modeling of a siemens primus 6 MV photon beam linear accelerator,” Austral. J. Basic Appl. Sci. 7, 340–346 (2013).

    Google Scholar 

  57. J. Palta, S. Kim, J. Li, and C. Liu, “Tolerance limits and action levels for planning and delivery of IMRT,” in Intensity-Modulated Radiation Therapy: The State of the Art, Ed. by J. R. Palta, T. Rockwell Mackie, and Zhe Chen, AAPM Medical Physics Monograph No. 29 (AAPM, 2003).

    Google Scholar 

  58. B. Kadman, N. Chawapun, S. Ua-apisitwong, T. Asakit, N. Chumpu, and J. Rueansri, “Consistency check of photon beam physical data after recommissioning process,” J. Phys.: Conf. Ser. 694, 012023 (2016).

    Google Scholar 

  59. “Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer,” IAEA Tech. Rep. Ser., No. 430 (Int. Atomic Energy Agency, Vienna, 2004).

  60. “Specification and acceptance testing of radiotherapy treatment planning systems,” IAEA-TECDOC-1540 (Int. Atomic Energy Agency, Vienna, 2007).

  61. B. Poppe, A. Ruehmann, K. Willborn, B. Allgaier, and D. Harder, “Three dimensional gamma-index analysis and considerations of the reference level definition for dosimetric IMRT plan verification with 2D ionisation chamber arrays,” in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Münich, Germany, Vol. 25/1: Radiation Oncology, Ed. by O. Dössel and W. C. Schlegel (Springer, Berlin, Heidelberg, 2010), pp. 248–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bencheikh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencheikh, M., Maghnouj, A., Tajmouati, J. et al. Validation of Monte Carlo simulation of 6 MV photon beam produced by Varian Clinac 2100 linear accelerator using BEAMnrc code and DOSXYZnrc code. Phys. Part. Nuclei Lett. 14, 780–787 (2017). https://doi.org/10.1134/S154747711705003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711705003X

Keywords

Navigation