Skip to main content
Log in

Ultraviolet divergences in non-renormalizable supersymmetric theories

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang–Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bern, J. J. Carrasco, I. J. Dixon, H. Johansson, and R. Roiban, “The ultraviolet behavior of N=8 supergravity at four loops,” Phys. Rev. Lett. 103, 081301 (2009).

    Article  ADS  Google Scholar 

  2. Z. Bern, J. J. Carrasco, I. J. Dixon, H. Johansson, and R. Roiban, “The complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory,” Phys. Rev. D: Part. Fields 82, 125040 (2010).

    Article  ADS  Google Scholar 

  3. G. Bossard, E. A. Ivanov, and A. V. Smilga, “Ultraviolet behavior of 6D Supersymmetric Yang-Mills theories and harmonic superspace,” J. High Energy Phys. 1512, 085 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, “Dynamical breaking of supersymmetry,” Nucl. Phys. B 188, 513 (1981).

    Article  ADS  MATH  Google Scholar 

  5. J. Gasser and H. Leutwyler, “Chiral perturbation theory to one loop,” Ann. Phys. (N.Y.) 158, 142 (1984); “Chiral perturbation theory: expansions in the mass of the strange quarks,” Nucl. Phys. B 250, 465 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. A. Shushpanov and A. V. Smilga, “Chiral perturbation theory with lattice regularization,” Phys. Rev. D: Part. Fields 59, 054013 (1999).

    Article  ADS  Google Scholar 

  7. A. A. Slavnov, “Invariant regularization of nonlinear chiral theories,” Nucl. Phys. B 31, 301 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Froissart, “Asymptotic behavior and subtractions in the mandelstam representation,” Phys. Rev. 123, 1053 (1961).

    Article  ADS  Google Scholar 

  9. Yu. M. Makeenko, K. A. Ter-Martirosian, and A. B. Zamolodchikov, “On the theory of the direct four-fermion interaction,” J. Exp. Theor. Phys. 44, 11 (1976).

    ADS  Google Scholar 

  10. G. ’t Hooft and M. J. G. Veltman, “One-loop divergences in the theory of gravitation,” Ann. Poincare Phys. Theor. A 20, 69 (1974).

    ADS  Google Scholar 

  11. D. Robert and A. V. Smilga, “Supersymmetry vs. ghosts,” J. Math. Phys. 49, 042104 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. V. Smilga, “Comments on the dynamics of the paisuhlenbeck oscillator,” SIGMA 5, 017 (2009).

    MathSciNet  MATH  Google Scholar 

  13. A. V. Smilga, “Superconformal theory as the theory of everything,” in Proceedings of Gribov-75 Memorial Workshop on Quarks, Hadrons and Strong Interactions, Budapest, May 22–24, 2005 (World Scientific, 2006), p. 443; arXiv:hep-th/0509022.

    Google Scholar 

  14. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  15. A. A. Tseytlin, “On non-abelian generalization of born-infeld action in string theory,” Nucl. Phys. B 501, 41 (1997)

    Article  ADS  MATH  Google Scholar 

  16. P. Koerber and A. Sevrin, “The non-abelian D-brane effective action through order a'4,” J. High Energy Phys. 0210, 046 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Paban, S. Sethi, and M. Stern, “Constraints from extended supersymmetry in quantum mechanics,” Nucl. Phys. B 534, 137 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Y. Kazama and T. Muramatsu, “Fully off-shell effective action and its supersymmetry in matrix theory,” Class. Quantum Grav. 18, 2277 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Nicolai and J. Plefka, “Supersymmetric effective action of matrix theory,” Phys. Lett. B 477, 309 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K. Becker, M. Becker, J. Polchinski, and A. Tseytlin, “Higher order graviton scattering in M(atrix) theory,” Phys. Rev. D: Part. Fields 56, 3174 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. H. Frampton and T. W. Kephart, “Explicit evaluation of anomalies in higher dimensions,” Phys. Rev. Lett. 50, 1343 (1983)

    Article  ADS  Google Scholar 

  22. L. Alvarez-Gaumé and E. Witten, “Gravitational anomalies,” Nucl. Phys. B 234, 269 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. V. Smilga, “Chiral anomalies in higherderivative supersymmetric 6D theories,” Phys. Lett. B 647, 298 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. I. L. Buchbinder and E. A. Ivanov, “Complete 1 = 4 structure of low-energy effective action in 1= 4 super-Yang-Mills theories,” Phys. Lett. B 524, 208 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. M. Drummond, P. J. Heslop, P. S. Howe, and S. F. Kerstan, “Integral invariants in 1 = 4 SYM and the effective action for coincident D-branes,” J. High Energy Phys. 0308, 016 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  26. B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” Sov. J. Nucl. Phys. 44, 512 (1986).

    Google Scholar 

  27. E. A. Ivanov, A. V. Smilga, and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726, 131 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. E. A. Ivanov and A. V. Smilga, “Conformal properties of hypermultiplet actions in six dimensions,” Phys. Lett. B 637, 374 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. P. S. Howe and K. S. Stelle, “Ultraviolet divergences in higher dimensional supersymmetric Yang–Mills theories,” Phys. Lett. B 137, 175 (1984).

    Article  ADS  Google Scholar 

  30. I. I. Buchbinder and N. G. Pletnev, “Leading lowenergy effective actions in the 6D hypermultiplet theory on a vector/tensor background,” Phys. Lett. B 744, 125 (2015).

    Article  ADS  MATH  Google Scholar 

  31. D. J. Gross and E. Witten, “Superstring modifications of Einstein’s equations,” Nucl. Phys. B 277, 1 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Bergshoeff, M. Rakowski, and E. Sezgin, “Higher derivative super-Yang-Mills theories,” Phys. Lett. B 185, 371 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Bossard, P. S. Howe, and K. S. Stelle, “The ultraviolet question in maximally supersymmetric field theories,” Gen. Rel. Grav. 41, 919 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. T. Grisaru, “Two-loop renormalizability of supergravity,” Phys. Lett. B 66, 75 (1977).

    Article  ADS  Google Scholar 

  35. S. Deser, J. H. Kay, and K. S. Stelle, “Renormalizability properties of supergravity,” Phys. Rev. Lett. 38, 527 (1977).

    Article  ADS  Google Scholar 

  36. R. E. Kallosh, “Counterterms in extended supergravities,” Phys. Lett. B 99, 122 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. S. Howe and U. Lindstrom, “Higher-order invariants in extended supergravity,” Nucl. Phys. B 181, 487 (1981).

    Article  ADS  Google Scholar 

  38. N. Beisert, H. Elwang, D. Z. Freedman, M. Kiermaier, A. Morales, and S. Stieberger, “E7(7) constraints on counterterms in 1 = 8 supergravity,” Phys. Lett. B 694, 265 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Bossard, P. S. Howe, K. S. Stelle, and P. Vanhove, “The vanishing volume of D = 4 superspace,” Class. Quantum Grav. 28, 215005 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Z. Bern, S. Davies, T. Dennen, and Y. T. Huang, “Absence of three-loop four-point divergences in 1 = 4 supergravity,” Phys. Rev. Lett. 108, 201301 (2012)

    Article  ADS  Google Scholar 

  41. Z. Bern, S. Davies, and T. Dennen. “Enhanced ultraviolet cancellations in N = 5 supergravity at four loops,” Phys. Rev. D: Part. Fields 90, 105011 (2014).

  42. C. M. Christensen, M. J. Duff, G. W. Gibbons, and M. Rocek, “Vanishing one-loop ß function in gauged N > 4 supergravity,” Phys. Rev. Lett. 45, 161 (1980)

    Article  ADS  Google Scholar 

  43. T. Curtwright, “Charge renormalization and high spin fields,” Phys. Lett. B 102, 17 (1981).

    Article  ADS  Google Scholar 

  44. S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. B 140, 516 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. F. Donoghue and T. Torma, “Infrared behaviour of graviton-graviton scattering,” Phys. Rev. D 60, 024003 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Smilga.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilga, A. Ultraviolet divergences in non-renormalizable supersymmetric theories. Phys. Part. Nuclei Lett. 14, 245–260 (2017). https://doi.org/10.1134/S1547477117020315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020315

Navigation