Skip to main content
Log in

Estimation of conformal cosmological model parameters with SDSS and SNLS supernova samples

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In spite of an enormous progress of standard ΛCDM cosmology (SC) a number of alternative approaches has been suggested because there are great puzzles with an origin and essence of dark matter and dark energy which unavoidably arise in the framework of the standard approach. Alternative approaches have to pass a number of observational tests including one with distant type Ia supernovae (SNe Ia) data. As it was shown [1] a conformal cosmological (CC) approach can explain cosmological SNe Ia data without introducing Λ-term, however, introducing an exotic rigid equation of state is needed. Later on, these statements were confirmed with larger samples of observational data [2, 3]. In the paper we check previous claims with joint SDSS-II and SNLS supernova samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Behnke, D. B. Blaschke, V. N. Pervushin, and D. V. Proskurin, “Description of supernova data in conformal cosmology without cosmological constant,” Phys. Lett. B 530, 20–26 (2002).

    Article  ADS  MATH  Google Scholar 

  2. A. F. Zakharov and V. N. Pervushin, “Conformal cosmological model parameters with distant SNe Ia data: 'gold' and 'silver',” Int. J. Mod. Phys. D 19, 1875–1887 (2010).

    Article  ADS  MATH  Google Scholar 

  3. A. F. Zakharov and V. N. Pervushin, “Conformal cosmological model and SNe Ia data,” Phys. At. Nauk 75, 1418–1425 (2012).

    Article  Google Scholar 

  4. M. Betoule et al., “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples,” Astron. Astrophys. 568 (A22), 1–32 (2014).

    Google Scholar 

  5. D. B. Blaschke, S. I. Vinitsky, A. A. Gusev, V. N. Pervushin, and D. V. Proskurin, “Cosmological production of vector bosons and cosmic microwave background radiation,” Phys. At. Nucl. 67, 1050–1062 (2004).

    Article  Google Scholar 

  6. B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “Hamiltonian general relativity in finite space and cosmological potential perturbations,” Int. J. Mod. Phys. A 21, 5957–5990 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “Hamiltonian cosmological perturbation theory,” Phys. Lett. B 633, 458–462 (2006).

    Article  ADS  MATH  Google Scholar 

  8. A. F. Zakharov, V. N. Pervushin, and V. A. Zinchuk, “Tetrad formalism and reference frames in general relativity,” Phys. Part. Nucl. 37, 104–134 (2006).

    Article  Google Scholar 

  9. B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “The hamiltonian approach to geneneral relativity and CMB primodial spectrum,” Int. J. Geom. Meth. Mod. Phys. 4, 171–181 (2007).

    Article  MATH  Google Scholar 

  10. B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “CMBR anisotropy: theoretical approaches,” Phys. At. Nucl. 70, 191–197 (2007).

    Article  Google Scholar 

  11. A. B. Arbuzov, B. M. Barbashov, A. Borowiec, V. N. Pervushin, S. A. Shuvalov, and A. F. Zakharov, “Is it possible to estimate the Higgs mass from the CMB power spectrum?,” Phys. At. Nucl. 72, 744–751 (2009).

    Article  Google Scholar 

  12. A. B. Arbuzov et al., “Conformal hamiltonian dynamics of general relativity,” Phys. Lett. B 691, 230–233 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, V. N. Pervushin, A. Borowiec, K. N. Pichugin, and A. F. Zakharov, “Universe as a representation of affine and conformal symmetries,” Phys. Part. Nucl. Lett. 8, 187–201 (2011).

    Article  MATH  Google Scholar 

  14. A. B. Arbuzov, B. M. Barbashov, V. N. Pervushin, A. Borowiec, and A. F. Zakharov, “Strong gravitation waves in terms of Maurer-Cartan forms,” Phys. At. Nucl. 74, 832–836 (2011).

    Article  Google Scholar 

  15. V. N. Pervushin, A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, A. Borowiec, K. N. Pichugin, and A. F. Zakharov, “The general relativity with conformal units,” Phys. Part. Nucl. 43, 682–688 (2012).

    Article  MATH  Google Scholar 

  16. V. N. Pervushin et al., “Conformal and affine hamiltonian dynamics of general relativity,” Gen. Rel. Grav. 44, 2745–2783 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Conley et al., “Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey,” Astrophys. J. Suppl. Ser. 192, 1–29 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Arbuzov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervushin, V.N., Arbuzov, A.B. & Zakharov, A.F. Estimation of conformal cosmological model parameters with SDSS and SNLS supernova samples. Phys. Part. Nuclei Lett. 14, 368–370 (2017). https://doi.org/10.1134/S1547477117020261

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020261

Navigation