Physics of Particles and Nuclei Letters

, Volume 14, Issue 2, pp 360–364 | Cite as

Metaplectic R-matrices

Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

We consider R-matrices, corresponding to the central (projective) extensions of orthogonal and symplectic groups, called by Metagonal and Metaplectic groups correspondingly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Weil, “Sur certains groupes,” Acta. Math 111, 143–211 (1964).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    B. Konstant, “Symplectic spinors,” in Symposia Mathematica (Academic, New York, 1974), Vol. 14, pp. 139–152.Google Scholar
  3. 3.
    A. M. Vershik, “Metagonal and metaplectic groups,” Zap. Nauch. Sem. LOMI 123, 3–35 (1983).MATHGoogle Scholar
  4. 4.
    L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan, “The quantum inverse problem method,” Theor. Math. Phys. 40, 688 (1980).MATHGoogle Scholar
  5. 5.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, “Factorized S matrices in two-dimensions as the exact solutions of certain relativistic quantum field models,” Ann. Phys. 120, 253 (1979).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Berg, M. Karowski, P. Weisz, and V. Kurak, “Factorized U(n) symmetric matrices in two dimensions,” Nucl. Phys. B 134, 125 (1978).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. D. Faddeev, “How algebraic bethe ansatz works for integrable model,” in Quantum Symmetries/Symetries Quantiques, Proceedings of the 64th Les-Houches Summer School, Ed. by A. Connes, K. Kawedzki, and J. Zinn-Justin (North-Holland, 1998), pp. 149–211; hep-th/9605187.Google Scholar
  8. 8.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” Lect. Notes Phys. 151, 61–119 (1982).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Shankar and E. Witten, “The S matrix of the kinks of the (Ψ Ψ)2 model,” Nucl. Phys. B 141, 349 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Bogoliubov Lab.JINRDubnaRussia
  2. 2.Yerevan Physics InstituteYerevanArmenia
  3. 3.Institut für Theoretische PhysikUniversität Leipzig, PF 100 920LeipzigGermany

Personalised recommendations