Physics of Particles and Nuclei Letters

, Volume 14, Issue 2, pp 400–402 | Cite as

Constants of motion in deformed oscillator and Coulomb systems

  • Tigran Hakobyan
  • Armen Nersessian
  • Hovhannes Shmavonyan
Physics of Elementary Particles and Atomic Nuclei. Theory
  • 20 Downloads

Abstract

In this note we propose a unified description for the constants of motion for superintegrable deformations of the oscillator and Coulomb systems on N-dimensional Euclidean space, sphere and hyperboloid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Higgs, “Dynamical symmetries in a spherical geometry. 1,” J. Phys. A 12, 309 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 1a.
    H. I. Leemon, “Dynamical symmetries in a spherical geometry. 2,” J. Phys. A 12, 489 (1979).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 2.
    F. Calogero, “Solution of a three-body problem in one dimension,” J. Math. Phys. 10, 2191 (1969); “Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials,” J. Math. Phys. 12, 419 (1971)ADSCrossRefGoogle Scholar
  4. 2a.
    J. Moser, “Three integrable hamiltonian systems connected with isospectral deformations,” Adv. Math. 16, 197 (1975).ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 3.
    S. Wojciechowski, “Superintegrability of the Calogero-Moser system,” Phys. Lett. A 95, 279 (1983).ADSMathSciNetCrossRefGoogle Scholar
  6. 4.
    V. Kuznetsov, “Hidden symmetry of the quantum Calogero-Moser system,” Phys. Lett. A 218, 212 (1996).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 5.
    M. Olshanetsky and A. Perelomov, “Classical integrable finite dimensional systems related to lie algebras,” Phys. Rep. 71, 313 (1981); “Quantum integrable systems related to lie algebras,” Phys. Rep. 94, 313 (1983).ADSMathSciNetCrossRefGoogle Scholar
  8. 6.
    T. Hakobyan, O. Lechtenfeld, A. Nersessian, A. Saghatelian, and V. Yeghikyan, “Integrable generalizations of oscillator and coulomb systems via actionangle variables,” Phys. Lett. A 376, 679 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 7.
    T. Hakobyan, O. Lechtenfeld, and A. Nersessian, “Superintegrability of generalized Calogero models with oscillator or Coulomb potential,” Phys. Rev. D: Part. Fields 90, 101701(R) (2014).ADSCrossRefGoogle Scholar
  10. 8.
    T. Hakobyan and A. Nersessian, “Runge-lenz vector in Calogero-Coulomb problem,” Phys. Rev. A 92, 022111 (2015)ADSCrossRefGoogle Scholar
  11. 8a.
    F. Correa, T. Hakobyan, O. Lechtenfeld, and A. Nersessian, “Spherical Calogero model with oscillator/Coulomb potential: quantum case,” Phys. Rev. D 93, 125009 (2016).ADSCrossRefGoogle Scholar
  12. 9.
    M. Feigin, O. Lechtenfeld, and A. Polychronakos, “The quantum angular Calogero-Moser model,” J. High Energy Phys. 1307, 162 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 9a.
    T. Hakobyan, O. Lechtenfeld, and A. Nersessian, “The spherical sector of the Calogero model as a reduced matrix model,” Nucl. Phys. B 858, 250 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 9b.
    T. Hakobyan, S. Krivonos, O. Lechtenfeld, and A. Nersessian, “Hidden symmetries of integrable conformal mechanical systems,” Phys. Lett. A 374, 801 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 9c.
    T. Hakobyan, A. Nersessian, and V. Yeghikyan, “Cuboctahedric Higgs oscillator from the Calogero model,” J. Phys. A 42, 205206 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 10.
    F. Tremblay, A. V. Turbiner, and P. Winternitz, “An infinite family of solvable and integrable quantum systems on a plane,” J. Phys. A 42, 242001 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 11.
    S. Post and P. Winternitz, “An infinite family of superintegrable deformations of the Coulomb potential,” J. Phys. A 43, 222001 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 12.
    O. Lechtenfeld, A. Nersessian, and V. Yeghikyan, “Action-angle variables for dihedral systems on the circle,” Phys. Lett. A 374, 4647 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 13.
    M. F. Ranada, “The Tremblay–Turbiner–Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization,” J. Phys. A 47, 165203 (2014); “Higher order superintegrability of separable potentials with a new approach to the post-Winternitz system,” J. Phys. A 46, 125206 (2013); “A new approach to the higher order superintegrability of the Tremblay–Turbiner–Winternitz system,” J. Phys. A 45, 465203 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Tigran Hakobyan
    • 1
    • 2
  • Armen Nersessian
    • 1
    • 2
  • Hovhannes Shmavonyan
    • 1
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations