Skip to main content
Log in

Sub-barrier fusion excitation function data and energy dependent Woods–Saxon potential

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods–Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods–Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85fm to a = 0.95fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Beckerman, Rep. Prog. Phys. 51, 1047 (1988).

    Article  ADS  Google Scholar 

  2. W. Reisdorf, J. Phys. G 20, 1297 (1994).

    Article  ADS  Google Scholar 

  3. M. Dasgupta, D. J. Hinde, N. Rowley, and A. M. Stefanini, Ann. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  4. A. B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).

    Article  ADS  Google Scholar 

  5. L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, Phys. Rep. 424, 1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Hagino and N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012).

    Article  ADS  Google Scholar 

  7. B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014).

    Article  ADS  Google Scholar 

  8. H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, Nucl. Phys. A 633, 421 (1998).

    Article  ADS  Google Scholar 

  9. M. Trotta, A. M. Stefanini, L. Corradi, A. Gadea, F. Scarlassara, S. Beghini, and G. Montagnoli, Phys. Rev. C 65, 011601 (2001).

    Article  ADS  Google Scholar 

  10. A. M. Stefanini, B. R. Behera, S. Beghini, L. Corradi, E. Fioretto, A. Gadea, G. Montagnoli, N. Rowley, F. Scarlassara, S. Szilner, and M. Trotta, Phys. Rev. C 76, 014610 (2007).

    Article  ADS  Google Scholar 

  11. J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Phys. Rev. C 52, 3151 (1995).

    Article  ADS  Google Scholar 

  12. A. A. Sonzogni, J. D. Bierman, M. P. Kelly, J. P. Lestone, J. F. Liang, and R. Vandenbosch, Phys. Rev. C 57, 722 (1998).

    Article  ADS  Google Scholar 

  13. H. M. Jia, C. J. Lin, F. Yang, X. X. Xu, H. Q. Zhang, Z. H. Liu, Z. D. Wu, L. Yang, N. R. Ma, P. F. Bao, and L. J. Sun, Phys. Rev. C 89, 064605 (2014).

    Article  ADS  Google Scholar 

  14. N. V. S. V. Prasad, A. M. Vinodkumar, A. K. Sinha, K. M. Varier, D. L. Sastry, N. Madhavan, R. Sugathan, D. O. Kataria, and J. J. Das, Nucl. Phys. A 603, 176 (1996).

    Article  ADS  Google Scholar 

  15. V. I. Zagrebaev, Phys. Rev. C 67, 061601 (2003).

    Article  ADS  Google Scholar 

  16. H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Phys. Rev. C 82, 054609 (2010).

    Article  ADS  Google Scholar 

  17. J. O. Newton, C. R. Morton, M. Dasgupta, J. R. Leigh, J. C. Mein, D. J. Hinde, and H. Timmers, Phys. Rev. C 64, 064608 (2001).

    Article  ADS  Google Scholar 

  18. A. M. Stefanini, G. Montagnoli, H. Esbensen, L. Corradi, S. Courtin, E. Fioretto, A. Goasduff, J. Grebosz, F. Haas, M. Mazzocco, C. Michelagnoli, T. Mijatovic, D. Montanari, G. Pasqualato, C. Parascandolo, et al., Phys. Lett. B 728, 639 (2014).

  19. W. D. Myers and W. J. Swaitecki, Phys. Rev. C 62, 044610 (2000).

    Article  ADS  Google Scholar 

  20. C. H. Dasso and G. Pollarolo, Phys. Rev. C 68, 054604 (2003).

    Article  ADS  Google Scholar 

  21. K. Hagino, N. Rowley, and M. Dasgupta, Phys. Rev. C 67, 054603 (2003).

    Article  ADS  Google Scholar 

  22. R. N. Sagaidak, S. P. Tretyakova, S. V. Khlebnikov, A. A. Ogloblin, N. Rowley, and W. H. Trzaska, Phys. Rev. C 76, 034605 (2007).

    Article  ADS  Google Scholar 

  23. N. Wang and W. Scheid, Phys. Rev. C 78, 014607 (2008).

    Article  ADS  Google Scholar 

  24. L. C. Vaz, Comput. Phys. Commun. 22, 451 (1981).

    Article  ADS  Google Scholar 

  25. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and W. Scheid, Eur. Phys. J. A 45, 125 (2010).

    Article  ADS  Google Scholar 

  26. D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Mod. Phys. Lett. A 26, 1017 (2011).

    Article  ADS  Google Scholar 

  27. D. Sukhvinder, M. Singh, and R. Kharab, Int. J. Mod. Phys. E 21, 1250054 (2012).

    Google Scholar 

  28. D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Commun. Theor. Phys. 55, 649 (2011).

    Article  ADS  Google Scholar 

  29. D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Phys. At. Nucl. 74, 49 (2011).

    Article  Google Scholar 

  30. J. O. Newton, J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I. Gontchar, and K. Hagino, Phys. Rev. C 70, 024605 (2004).

    Article  ADS  Google Scholar 

  31. A. Mukherjee, D. J. Hinde, M. Dasgupta, K. Hagino, J. O. Newton, and R. D. Butt, Phys. Rev. C 75, 044608 (2007).

    Article  ADS  Google Scholar 

  32. M. Singh, D. Sukhvinder, and R. Kharab, Mod. Phys. Lett. A 26, 2129 (2011).

    Article  ADS  Google Scholar 

  33. M. Singh, D. Sukhvinder, and R. Kharab, Nucl. Phys. A 897, 179 (2013).

    Article  ADS  Google Scholar 

  34. M. Singh, D. Sukhvinder, and R. Kharab, Nucl. Phys. A 897, 198 (2013).

    Article  ADS  Google Scholar 

  35. M. Singh, D. Sukhvinder, and R. Kharab, AIP Conf. Proc. 1524, 163 (2013).

    Article  ADS  Google Scholar 

  36. M. Singh and R. Kharab, EPJ Web Conf. 66, 03043 (2014).

    Article  Google Scholar 

  37. M. Singh, and R. Kharab, Atti Della “Fondazione Giorgio Ronchi,” Anno LXV 6, 751 (2010).

    Google Scholar 

  38. M. Singh, M. Phil. Dissertation (Kurukshetra Univ., Kurukshetra, Haryana, India, 2009, unpublished).

    Google Scholar 

  39. M. Singh, PhD Thesis (Kurukshetra Univ., Kurukshetra, Haryana, India, 2013, unpublished).

    Google Scholar 

  40. M. S. Gautam, Phys. Rev. C 90, 024620 (2014).

    Article  ADS  Google Scholar 

  41. M. S. Gautam, Nucl. Phys. A 933, 272 (2015).

    Article  ADS  Google Scholar 

  42. M. S. Gautam, Mod. Phys. Lett. A 30, 1550013 (2015).

    Article  ADS  Google Scholar 

  43. M. S. Gautam, Phys. Scr. 90, 025301 (2015).

    Article  ADS  Google Scholar 

  44. M. S. Gautam, Phys. Scr. 90, 055301 (2015), Phys. Scr. 90, 125301 (2015), Indian J. Phys. 90, 335 (2016) Braz. J. Phys. 46, 143 (2016), Pramana 86, 1067 (2016), Chinese Phys. C 40, 054101 (2016), Chinese J. Phys. 54, 86 (2016).

    Article  ADS  Google Scholar 

  45. M. S. Gautam, Acta Phys. Polon. B 46, 1055 (2015).

    Article  ADS  Google Scholar 

  46. M. S. Gautam, Can. J. Phys. 93, 1343 (2015), Chin. Phys. C 39, 114102 (2015), Commun. Theor. Phys. 64, 710 (2015).

    Article  ADS  Google Scholar 

  47. M. S. Gautam, Kaur Amandeep, and M. K. Sharma, Phys. Rev. C 92, 054605 (2015), M. S. Gautam and M. K. Sharma, AIP Conf. Proc. 1675, 020052 (2015), M. S. Gautam, and M. K. Sharma, Braz. J. Phys. 46, 133 (2016).

    Article  ADS  Google Scholar 

  48. K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).

    Article  ADS  Google Scholar 

  49. C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973).

    Article  ADS  Google Scholar 

  50. Neto R. Liguori, J. C. Acquadro, P. R. S. Gomes, A. S. de Toledo, C. F. Tenreiro, E. Crema, N. C. Filjo, and M. M. Coimnra, Nucl. Phys. A 512, 333 (1990).

    ADS  Google Scholar 

  51. C. P. Silva, D. Pereira, L. C. Chamon, E. S. Rossi, G. Ramirez, A. M. Borges, and C. E. Aguiar, Phys. Rev. C 55, 3155 (1997).

    Article  ADS  Google Scholar 

  52. M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, and A. di Rienzo, Phys. Rev. C 25, 837 (1982).

    Article  ADS  Google Scholar 

  53. D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

    Article  ADS  Google Scholar 

  54. L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. de Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cndido Ribeiro, E. S. Rossi, and C. P. Silva, Phys. Rev. C 66, 014610 (2002).

    Article  ADS  Google Scholar 

  55. K. Washiyama and D. Lacroix, Phys. Rev. C 74, 024610 (2008).

    Article  ADS  Google Scholar 

  56. C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).

    Article  ADS  Google Scholar 

  57. A. S. Umar, C. Simenel, and V. E. Oberacker, Phys. Rev. C 89, 034611 (2014).

    Article  ADS  Google Scholar 

  58. H. Esbensen, S. Landowne, and C. Price, Phys. Rev. C 36, 1216 (1987).

    Article  ADS  Google Scholar 

  59. T. Rumin, K. Hagino, and N. Takigawa, Phys. Rev. C 61, 014605 (1999).

    Article  ADS  Google Scholar 

  60. V. Tripathi, T. Baby Lagy, J. J. Das, P. Sugathan, N.Madhavan, A. K. Sinha, P. V. Madhusudhana Rao, S. K. Hui, R. Singh, and K. Hagino, Phys. Rev. C 65, 014614 (2001).

    Article  ADS  Google Scholar 

  61. A. M. Vinodkumar, K. M. Varier, N. V. S. V. Prasad, D. L. Sastry, A. K. Sinha, N. Madhavan, P. Sugathan, D. O. Kataria, and J. J. Das, Phys. Rev. C 53, 803 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Singh Gautam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, M.S. Sub-barrier fusion excitation function data and energy dependent Woods–Saxon potential. Phys. Part. Nuclei Lett. 13, 427–435 (2016). https://doi.org/10.1134/S1547477116040063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116040063

Navigation