Abstract
This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.
This is a preview of subscription content, access via your institution.
References
United Nations Scientific Committee on the Effects of Atomic Radiation, “Medical Radiation Exposures,” in Source and Effects of Ionizing Radiation, UNSCEAR 2008 Report to the General Assembly with Scientific Annexes (United Nations, New York, 2010), Vol. 1, Annex A.
International Commission on Radiological Protection, The 2007 Recommendations of the Commission on Radiological Protection, ICRP Publ. No. 103, Ann. ICRP 37 (2-4) (Pergamon, 2007).
B. R. Lankipalli, W. D. McDavid, S. B. Dove, E. Wieckowska, R. G. Waggener, and J. R. Mercier, “Comparison of five methods for the derivation of spectra for a constant potential dental x-ray unit,” DentoMaxillo-Facial Radiol. 30, 264–269 (2001).
I. Kawrakow and D. Rogers, “The EGSnrc code system: Monte Carlo simulation of electron and photon transport,” PIRS-701 (NRCC, Ottawa, 2000).
J. F. Briesmeister et al., MCNP A General Monte Carlo N-Particle Transport Code, Version 4B2 (Los Alamos National Laboratory, New Mexico, 1997).
A. Fasso, A. Ferrari, and P. R. Sala, “Electron-photon transport in FLUKA: status,” in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation, and Applications, Proceedings of the Monte Carlo 2000 Conference. Lisbon, 2000 (Springer, Berlin, Heidelberg, 2001), pp. 159–164.
Geant Collab., Geant-4 User’s Guide for Application Developers (CERN, 2005).
R. Kramer, H. J. Khoury, and J. W. Vieira, “CALDose_X–a software tool for assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology,” Phys. Med. Biol. 53, 6437–6459 (2008).
J. M. Boone and J. A. Seibert, “An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 keV,” Med. Phys. 24, 1661–1670 (1997).
G. G. Poludniowski and P. M. Evans, “Calculation of x-ray spectra emerging from an x-ray tube. Part I: Electron penetration characteristics in x-ray targets,” Med. Phys. 34, 2164–2174 (2007).
R. Nowotny and A. Höfer, “Ein Programm für die Berechnung von Diagnostischen Röntgenspektren,” RöFo, Fortschr. Gebiete Röntgenstr. Nuklearmed. 142, 685–689 (1985).
D. W. O. Rogers and B. Walters, BEAMnrc Users Manual, NRCC Report PIRS-0509 (NRC, Ottawa, 1995).
M. R. Ay, M. Shahriari, S. Sarkar, M. Adib, and H. Zaidi, “Monte Carlo simulation of X-ray spectra in diagnostic radiology and mammography using MCNP4C,” Phys. Med. Biol. 49, 4897–4917 (2004).
International Commission on Radiation Units and Measurements, “Phantoms and computational models in therapy, diagnosis and protection,” ICRU Report No. 48 (Bethesda, MD, 1993).
M. Cristy, “Mathematical phantoms representing children of various ages for use in estimates of internal dose,” NUREG/CR-1159 (ORNL/NUREG-367) (Nuclear Regulatory Comission, Oak Ridge, TN, USA, 1980).
I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, “Computerized threedimensional segmented human anatomy,” Med. Phys. 21, 299–302 (1994).
M. Zankl, N. Petoussi, and A. Wittmann, “The GSF voxel phantom and their application in radiology and radiation protection,” in Proceedings of the Workshop on Voxel Phantoms, NRPB, Chilton, UK, 1996, pp. 98–104.
International Commission on Radiological Protection, “Adult reference computational phantoms,” ICRP Publ. No. 110, Ann. ICRP (Pergamon, 2009).
International Commission on Radiological Protection, “Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publ. No. 89 (Pergamon, 2003).
A. Yu. Vasil’ev, Yu. I. Vorob’ev, and V. P. Truten, Beam Diagnostics in Dentistry (Medika, Moscow, 2007) [in Russian].
A. Yu. Vasil’ev, Yu. I. Vorob’ev, N. S. Serova, et al., Beam Diagnostics in Dentistry, The School-Book (GEOTAR-Media, Moscow, 2008) [in Russian].
“Patient effective dose control in X-ray examinations” Methodical Instructions MU 2.6.1.2944-11 (2011).
International Commission on Radiation Units and Measurements, “Conversion coefficients for use in radiological protection,” ICRU Report No. 57 (Bethesda, MD, 2001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © K.O. Makarevich, V.F. Minenko, K.A. Verenich, S.A. Kuten, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.
Rights and permissions
About this article
Cite this article
Makarevich, K.O., Minenko, V.F., Verenich, K.A. et al. Using the Monte Carlo method for assessing the tissue and organ doses of patients in dental radiography. Phys. Part. Nuclei Lett. 13, 406–415 (2016). https://doi.org/10.1134/S1547477116030171
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1547477116030171