Skip to main content
Log in

Stochastic vacuum of quantum chromodynamics as an environment for color particles

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The behavior of quarks is described within approaches used in quantum mechanics and related disciplines (quantum optics and quantum theory of information). The stochastic vacuum of quantum chromodynamics is treated as an environment (closed pool) for color particles (quarks). Their interaction results in a loss of information on the quark color state and consequently in the impossibility of observing it (the confinement of quarks). The processes are described using quantities of the quantum theory of information, such as von Neumann entropy, fidelity, and purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  2. W. H. Zurek et al., in Quantum Decoherence, Proceedings of the Poincaré Seminar 2005, Ed. by B. Duplantier, J.-M. Raimond, and V. Rivasseau (Birkhäuser, Basel, 2007).

  3. D. S. Kuz’menko, Yu. A. Simonov, and V. I. Shevchenko, “Vacuum, confinement, and QCD strings in the vacuum correlator method,” Phys. Usp. 47, 1–15 (2004).

    Article  ADS  Google Scholar 

  4. Yu. A. Simonov, “The confinement,” Phys. Usp. 39, 313–336 (1996).

    Article  ADS  Google Scholar 

  5. J. Ambjørn and P. Olesen, “On the formation of a color magnetic quantum liquid in QCD,” Nucl. Phys. B 170, 60–78 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. D. Giacomo, H. G. Dosch, V. I. Shevchenko, and Y. A. Simonov, “Field correlators in QCD. theory and applications,” Phys. Rep. 372, 319–368 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974).

    Article  ADS  Google Scholar 

  8. P. V. Buividovich and V. I. Kuvshinov, “Asymptotic behavior of Wilson loops from Schrödinger equation on the gauge group,” Phys. Lett. B 634, 262–266 (2006).

    Article  ADS  Google Scholar 

  9. V. I. Kuvshinov, “Confinement, decoherence, chaos, Higgs boson, entanglement and so on,” Nonlinear Phenom. Complex Syst. 16, 1–6 (2013).

    MathSciNet  Google Scholar 

  10. V. I. Kuvshinov and A. V. Kuzmin, Gauge Fields and Theory of Deterministic Chaos (Beloruss. Nauka, Minsk, 2006) [in Russian].

    Google Scholar 

  11. V. I. Kuvshinov and P. V. Buividovich, “White mixed states in QCD stochastic vacuum,” Nonlinear Phenom. Complex Syst. 8, 313–316 (2005).

    Google Scholar 

  12. V. I. Kuvshinov and P. V. Buividovich, “Decoherence of quark colour states in QCD vacuum,” Acta Phys. Polon. B: Proc. Suppl. 1, 579–582 (2008).

    Google Scholar 

  13. V. I. Kuvshinov and E. G. Bagashov, “Evolution of colour superposition in the stochastic QCD vacuum,” Nonlinear Phenom. Complex Syst. 16, 242–246 (2013).

    MATH  Google Scholar 

  14. C. K. Zachos, “A classical bound on quantum entropy,” J. Phys. A: Math. Theor. 40, F407–F412 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. I. Kuvshinov and E. G. Bagashov, “Confined and chaotic behaviour of quantum colour particles in QCD vacuum,” Nonlinear Phenom. Complex Syst. 18, 326–334 (2015).

    MATH  Google Scholar 

  16. A. Peres, “Stability of quantum motion in chaotic and regular systems,” Phys. Rev. A 30, 1610–1615 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. I. Kuvshinov and A. V. Kuzmin, “Stability of holonomic quantum computations,” Phys. Lett. A 316, 391–394 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. I. Kuvshinov and E. G. Bagashov, “Confinement of color states in a stochastic vacuum of quantum chromodynamics,” Theor. Math. Phys. 184, 1304–1310 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Ya. Kilin, “Quantum information,” Phys. Usp. 42, 435–452 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kuvshinov.

Additional information

Original Russian Text © V. Kuvshinov, E. Bagashov, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvshinov, V., Bagashov, E. Stochastic vacuum of quantum chromodynamics as an environment for color particles. Phys. Part. Nuclei Lett. 13, 295–297 (2016). https://doi.org/10.1134/S154747711603016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711603016X

Keywords

Navigation