Skip to main content
Log in

Application of the Monte Carlo methods and variational procedure for optimizing time-of-flight neutron diffractometer characteristics

  • Neutron Physics
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Based on variational calculus, a procedure for the optimal approximation of detector surface of the time-of-flight neutron diffractometer has been suggested. The exact solution for a point sample and zero thickness detector has been obtained. Using the shape of the detector surface, an optimized Monte Carlo simulation has been performed for the parameters of the spectrometer depending on the sample size and detector thickness, its azimuthal and Bragg’s angular dimensions, and taking into account the neutron absorption in the sample and detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Aksenov and A. M. Balagurov, “Neutron time-offlight diffractometry,” Phys. Usp. 39, 897–924 (1996).

    Article  ADS  Google Scholar 

  2. P. Hiismaki, in Proceedings of the 5th IAEA Symposium on Neutron Inelastic Scattering, Grenoble, March 6–10, 1972 (IAEA, Vienna, 1972).

    Google Scholar 

  3. H. Poyry, P. Hiismaki, and A. Virjo, “Principles of reverse neutron time-of-flight spectrometry with Fourier chopper applications,” Nucl. Instrum. Methods Phys. Res. 126, 421–433 (1975).

    Article  ADS  Google Scholar 

  4. V. A. Trunov, V. A. Kudryashev, V. A. Ul’yanov, A. P. Bulkin, V. G. Muratov, T. K. Korobkova, A. F. Shchebetov, P. Hiismaki, H. Poyry, A. Tiitta, O. Antson, Kh. Mutka, Kh. Kukkonen, and K. Tilli, “High resolution diffractometer called the ‘MiniSfinks’,” Preprint LINP No. 1277 (Leningr. Inst. Nucl. Phys., Leningrad, 1987).

    Google Scholar 

  5. V. L. Aksenov, O. Antson, A. M. Balagurov, A. P. Bulkin, B. I. Voronov, V. A. Kudryashev, V. G. Muratov, H. Poyry, Yu. A. Pinchuk, E. V. Serochkin, V. G. Simkin, A. Tiitta, V. A. Trunov, V. M. Frolushkin, P. Hiismaki, and T. Khorvat, “Neutron diffractometer at the IBR-2 reactor,” JINR Commun. P3-91-172 (JINR, Dubna, 1991).

    Google Scholar 

  6. J. M. Carpenter, “Extended detectors in neutron timeof-flight diffraction experiments,” Nucl. Instrum. Methods Phys. Res. 47, 179–180 (1967).

    Article  ADS  Google Scholar 

  7. A. Holas, Nucleonika 13, 871 (1968).

    Google Scholar 

  8. A. Holas et al., JINR Commun. No. E14-3759 (JINR, Dubna, 1968).

    Google Scholar 

  9. I. M. Gelfand and V. S. Fomin, Variational Calculus (Fizmatlit, Moscow, 1961), p. 228 [in Russian].

    Google Scholar 

  10. A. M. Balagurov and V. A. Kudryashov, “Correlation Fourier diffractometry for long-pulse neutron sources: a new concept,” in Proceedings of the International Collaboration on Advanced Neutron Sources ICANS-XIX, PSI, Grindelwald, Switzerland, March 8–12, 2010.

    Google Scholar 

  11. E. S. Kuzmin, Results of High Resolution Fourier Diffractometer Calculation (OIYaI, Dubna, 2012) [in Russian].

    Google Scholar 

  12. V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schroder, and R. Wagner, “Optimization of detectors in time-focusing geometry for RTOF neutron difractometers,” Nucl. Instrum. Methods Phys. Res. B 93, 355–361 (1994).

    Article  ADS  Google Scholar 

  13. S. A. Kuten and A. A. Khrushchinsky, “Optimization of neutron detector of DN-12 specialized diffractometer,” Report No. 20034475 of Research Work on a Contract Basis No. 17/2003 (NII Yad. Problem, Minsk, 2003), p. 44.

    Google Scholar 

  14. J. F. Briesmeister, “MCNPa general Monte Carlo nparticle transport,” Version 4A, LA-12625 (Los Alamos National Laboratory, New Mexico, 1993).

    Google Scholar 

  15. C. G. Windsor, Pulsed Neutron Scattering (Taylor and Francis, London, 1981; Energoatomizdat, Moscow, 1985).

    Google Scholar 

  16. Yu. A. Aleksandrov, E. I. Sharapov, and L. Cher, Diffraction Methods in Neutron Physics (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Speransky.

Additional information

Original Russian Text © A.A. Khrushchinsky, S.A. Kuten, K.A. Viarenich, P.A. Speransky, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrushchinsky, A.A., Kuten, S.A., Viarenich, K.A. et al. Application of the Monte Carlo methods and variational procedure for optimizing time-of-flight neutron diffractometer characteristics. Phys. Part. Nuclei Lett. 13, 390–405 (2016). https://doi.org/10.1134/S1547477116030134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116030134

Keywords

Navigation