Skip to main content
Log in

Dark energy and graviton mass in the nearby universe

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The problem of the local Hubble flow on scales of several Mpc induced by the dark energy realized by a scalar quintessence field is considered within the framework of relativistic gravity theory (RGT). The observational Hubble Space Telescope data are shown to be well described in RGT by a model similar to the Chernin–Baryshev–Teerikorpi model constructed in general relativity, with the local Hubble constant being smaller than the cosmological Hubble constant. A stringent constraint has been placed on the quintessence parameter, 0 ≤ ν ≤ 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sandage et al., “The Hubble constant: a summary of the HST program for the luminosity calibration of type Ia supernovae by means of Cepheids,” Astrophys. J. 653, 843–860 (2006); arXiv:astro-ph/0603647.

    Article  ADS  Google Scholar 

  2. A. Sandage et al., Astrophys. J. 527, 479 (1999).

    Article  ADS  Google Scholar 

  3. A. D. Chernin, “Dark energy and universal antigravitation,” Phys. Usp. 51, 253–282 (2008).

    Article  ADS  Google Scholar 

  4. A. Chernin, P. Teerikorpi, and Yu. Baryshev, “Why is the Hubble flow so quiet?,” Adv. Space Res. 31, 479 (2003); astro-ph/0012021.

    Article  ADS  Google Scholar 

  5. A. D. Chernin, “Cosmic vacuum,” Phys. Usp. 44, 1099 (2001).

    Article  ADS  Google Scholar 

  6. I. D. Karachentsov et al., “The Hubble flow around the local group,” Mon. Not. R. Astron. Soc. 393, 1265–1284 (2009); astro-ph/0811.4610.

    Article  ADS  Google Scholar 

  7. A. Kogut et al., Astrophys. J. 419, 1 (1993).

    Article  ADS  Google Scholar 

  8. A. D. Chernin, “Dark energy in the nearby Universe: HST data, nonlinear theory, and computer simulations,” Phys. Usp. 56, 704–709 (2013).

    Article  ADS  Google Scholar 

  9. G. Hinshow et al., arXiv:1212.5226.

  10. A. A. Logunov and M. A. Mestvirishvili, The Relativistic Theory of Gravitation (Nauka, Moscow, 2011; Mir, Moscow, 1989).

    Google Scholar 

  11. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, “Graviton mass and evolution of a Friedmann universe,” Theor. Math. Phys. 74, 1 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. Yu. V. Chugreev, “Cosmological consequences of the relativistic theory of gravitation with massive gravitons,” Theor. Math. Phys. 79, 554 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, “Graviton mass, quintessence, and oscillatory character of Universe evolution,” Phys. At. Nucl. 67, 1596 (2004).

    Article  Google Scholar 

  14. M. A. Mestvirishvili, K. A. Modestov, and Yu. V. Chugreev, “Quintessence scalar field in the relativistic theory of gravity,” Theor. Math. Phys. 152, 1342 (2006).

    Article  MathSciNet  Google Scholar 

  15. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Gravitational field self-limitation and its role in the Universe,” Phys. Usp. 49, 1179 (2006).

    Article  ADS  Google Scholar 

  16. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Cosmological constant and Minkowski space,” Phys. Part. Nucl. 38, 291 (2007).

    Article  Google Scholar 

  17. Yu. V. Chugreev, “The vacuum cosmological solution is unique in the relativistic theory of gravity,” Theor. Math. Phys. 161, 1420 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  18. Yu. V. Chugreev, “Post-Newtonian approximation of the relativistic theory of gravitation on a cosmological background,” Theor. Math. Phys. 82, 328 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. M. Kopeikin and A. Petrov, “Post-Newtonian celestial dynamics in cosmology: field equations,” Phys. Rev. D: Part. Fields 87, 044029 (2013); arXiv:1302.5706 [gr-qc].

    Article  ADS  Google Scholar 

  20. V. N. Lukash and V. A. Rubakov, “Dark energy: myths and reality,” Phys. Usp. 51, 283–289 (2008).

    Article  ADS  Google Scholar 

  21. arXiv:1502.01589.

  22. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Univ. Press, Princeton, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Chugreev.

Additional information

Original Russian Text © Yu.V. Chugreev, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugreev, Y.V. Dark energy and graviton mass in the nearby universe. Phys. Part. Nuclei Lett. 13, 38–45 (2016). https://doi.org/10.1134/S1547477116010088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116010088

Keywords

Navigation