Skip to main content
Log in

Effect of pd and dd reactions enhancement in deuterides TiD2, ZrD2 and Ta2D in the astrophysical energy range

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Investigation of the pd-and dd-reactions in the ultralow energy (~keV) range is of great interest in the aspect of nuclear physics and astrophysics for developing of correct models of burning and evolution of stars. This report presents compendium of experimental results obtained at the pulsed plasma Hall accelerator (TPU, Tomsk). Most of those results are new, such as

• temperature dependence of the neutron yield in the D(d, n)3He reaction in the ZrD2, Ta2D, TiD2

• potentials of electron screening and respective dependence of astrophysical S-factors in the dd-reaction for the deuteron collision energy in the range of 3–6 keV, with ZrD2, Ta2D temperature in the range of 20–200°C [1]

• characteristics of the reaction d(p, γ)3He in the ultralow collision proton-deuterons energy range of 4-13 keV [2, 3] in ZrD2, Ta2D and TiD2

• observation of the neutron yield enhancement in the reaction D(d, n)3He at the ultralow deuteron collision energy due to channeling of deuterons in microscopic TiD2 with a face-centered cubic lattice type TiD1.73, oriented in the [100] direction [4].

The report includes discussion and comparison of the collected experimental results with the global data and calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Friar, in Proceedings of the International Conference on the Theory of Few Body and Quark-Hadronic System, D4-87-692 (Dubna, 1987), p.70.

    Google Scholar 

  2. G. S. Chulick, Y. E. Kim, R. A. Rice, and M. Rabinowitz, “Extended parameterization of nuclear-reaction cross sections for few-nucleon nuclei,” Nucl. Phys. A 551, 255 (1993).

    Article  ADS  Google Scholar 

  3. J. Torre and B. Goulard, “Mesonic exchange currents and radiative thermal neutron capture by the deuteron,” Phys. Rev. C 28, 529 (1983).

    Article  ADS  Google Scholar 

  4. J. L. Friar, B. F. Gibson, H. C. Jean, and G. L. Payne, “Nuclear transition rates in µ-catalyzed p-d fusion,” Phys. Rev. Lett. 66, 1827 (1991).

    Article  ADS  Google Scholar 

  5. V. F. Kharchenko, M. A. Navrotsky, and P. A. Katerinchuk, “Effects of the Coulomb interaction in protondeuteron scattering and radiative capture at zero energy,” Sov. J. Nucl. Phys. 55, 49 (1992).

    Google Scholar 

  6. J. N. Bahcall and M. H. Pinsonneault, “Standard solar models, with and without helium diffusion, and the solar neutrino problem,” Rev. Mod. Phys. 64, 885 (1992).

    Article  ADS  Google Scholar 

  7. V. B. Belyaev, A. Bertin, Vit. M. Bystritsky, Vyach. M. Bystritsky, A. Gula, O. I. Kartavtsev, A. V. Kravtsov, A. V. Luchinsky, G. A. Mesyats, L. A. Rivkis, N. A. Rotakhin, A. A. Sinebryukhov, S. I. Sorokin, S. G. Stetsenko, V. A. Stolupin, et al., “New proposals for the investigation of strong interaction of light nuclei at super low energies,” Nucleonika 40, 85 (1995).

    Google Scholar 

  8. C. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (Univ. of Chicago Press, Chicago, 1988).

    Google Scholar 

  9. H. J. Assenbaum, K. Langanke, and C. Rolfs, “Effects of electron screening of low-energy fusion cross sections,” Z. Phys. A 327, 461 (1987).

    ADS  Google Scholar 

  10. S. Ichimaru, “Nuclear fusion in dense plasmas,” Rev. Mod. Phys. 65, 255 (1993).

    Article  ADS  Google Scholar 

  11. G. Shaviv and N. J. Shavi, “Is there a dynamic effect in the screening of nuclear reactions in stellar plasmas?,” Astrophys. J. 529, 1054 (2000).

    Article  ADS  Google Scholar 

  12. J. Kasagi, H. Yuki, T. Baba, T. Noda, T. Ohtsuki, and A. G. Lipson, “Strongly enhanced DD fusion reaction in metals observed for keV D+ bombardment,” J. Phys. Soc. Jpn. 71, 2881 (2002).

    Article  ADS  Google Scholar 

  13. K. Czerski, A. Huke, P. Heide, and G. Ruprecht, “Experimental and theoretical screening energies for the 2H(d, p)3 H reaction in metallic environments,” Eur. Phys. J. A 27, 83 (2006).

    Article  ADS  Google Scholar 

  14. F. Raiola, B. Burchard, Zs. Fölöp, Gy. Gyürky, S. Zeng, J. Cruz, A. Di Leva, B. Limata, M. Fonseca, H. Luis, M. Aliotta, H. W. Becker, C. Broggini, A. D’Onofrio, L. Gialanella, et al., “Enhanced d(d, p)t fusion reaction in metals,” Eur. Phys. J. A 27, 79 (2006).

    Article  ADS  Google Scholar 

  15. A. Huke, K. Czerski, and P. Heide, “Measurement of the enhanced screening effect of the d + d reactions in metals,” Nucl. Instrum. Methods Phys. Res. B 256, 599 (2007).

    Article  ADS  Google Scholar 

  16. K. Czersky, A. Huke, L. Martin, N. Targosz, D. Blauth, A. Görska, P. Heide, and H. Winter, “Measurements of enhanced electron screening in d+d reactions under UHV conditions,” J. Phys. G: Nucl. Part. Phys. 35, 014012 (2008)

    Article  ADS  Google Scholar 

  17. G. Ruprecht, K. Czerski, D. Bemmerer, P. Heide, and M. Hoeft, “Coherent resonance contributions in the reactions 6Li(d, α)4He and 10B(d, p)11B at sub-Coulomb energies,” Phys. Rev. C 70, 025803 (2004).

    Article  ADS  Google Scholar 

  18. A. Huke, K. Czerski, G. Ruprecht, N. Targosz, W. ebrowski, and P. Heide, “Enhancement of the deuteron-fusion reactions in metals and its experimental implications,” Phys. Rev. C 78, 015803 (2008).

    Article  ADS  Google Scholar 

  19. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, A. P. Kobzev, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S.S.Parzhitskii, F. M. Pen’kov, A. V. Philippov, V. L. Kaminskii, Yu. Zh. Tuleushev, and J. Wozniak, “Measurement of astrophysical S factors and electron screening potentials for d(d, n)3He reaction in ZrD2, TiD2, D2O, and CD2 targets in the ultralow energy region using plasma accelerators,” Phys. At. Nucl. 75, 53 (2012).

    Article  Google Scholar 

  20. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, A. P. Kobzev, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, V. L. Kaminskii, Yu. Zh. Tuleushev, and J. Wozniak, “Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n)3He reaction proceeding in deuterides ZrD2 and TiD2,” Phys. At. Nucl. 75, 913 (2012).

    Article  Google Scholar 

  21. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, A. P. Kobzev, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, V. L. Kaminskii, Yu. Zh. Tuleushev, and J. Wozniak, “Measurement of astrophysical S-factors and electron screening potentials for d(d, n)3He reaction in ZrD2, TiD2 and TaD0.5 targets in the ultralow energy region using plasma accelerator,” Nucl. Phys. A 889, 93 (2012).

    Article  ADS  Google Scholar 

  22. V. M. Bystritsky, Vit. M. Bystritskii, J. Wozniak, S. Gazi, J. Huran, A. P. Kobzev, G. N. Dudkin, A. P. Kobzev, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, Yu. Zh. Tuleushev, A. V. Philippov, and M. Filipowicz, Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (11/2), 11 (2012).

    Google Scholar 

  23. V. M. Bystritskii, V. M. Bystritskii, G. N. Dudkin, M. Filipovich, Sh. Gazhi, I. Guran, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Filippov, and Yu. Zh. Tuleushev, “Effect of the crystal structure of a deuterated target on the yield of neutrons in the dd reaction at ultralow energies,” JETP Lett. 99, 497 (2014).

    Article  ADS  Google Scholar 

  24. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, G. A. Mesyats, B.A.Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, Yu. Zh. Tuleushev, and V. A. Varlachev, “Experimental verification of hypothesis of dd reaction enhancement by channeling of deuterons in titanium deuteride at ultralow energies,” Nucl. Instrum. Methods Phys. Res. A 764, 42–47 (2014).

    Article  ADS  Google Scholar 

  25. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, B. A. Nechaev, V.N.Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, and Yu. Zh. Tuleushev, “First experimental evidence of d(p, γ)3 He reaction in deuteride titanium in ultralow collision energy region,” Nucl. Instrum. Methods Phys. Res. A 753, 91–96 (2014).

    Article  ADS  Google Scholar 

  26. V. M. Bystritsky, A. P. Kobzev, A. R. Krylov, S. S. Parzhitskii, A. V. Philippov, G. N. Dudkin, B.A.Nechaev, V. N. Padalko, F. M. Pen’kov, Yu. Zh. Tuleushev, M. Filipowicz, Vit. M. Bystritskii, S. Gazi, and J. Huran, “Measuring the astrophysical S factors and the cross sections of the p(d, γ)3He reaction in the ultralow energy region using a zirconium deuteride target,” Phys. Part. Nucl. Lett. 10, 717–722 (2013).

    Article  Google Scholar 

  27. V. M. Bystritsky, A. P. Kobzev, A. R. Krylov, S. S. Parzhitskii, A. V. Philippov, G. N. Dudkin, B.A.Nechaev, V. N. Padalko, F. M. Pen’kov, Yu. Zh. Tuleushev, M. Filipowicz, Vit. M. Bystritskii, S. Gazi, and J. Huran, “Study of the p(d, γ)3He reaction at ultralow energies using a zirconium deuteride target,” Nucl. Instrum. Methods Phys. Res. A 737, 248–252 (2014).

    Article  ADS  Google Scholar 

  28. V. M. Bystritsky, Vit. M. Bystritsky, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, B. A. Nechaev, V.N.Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, and Yu. Zh. Tuleushev, “Experimental observation of electron screening for the d(d, γ)3 He nuclear reaction in titanium deuteride TiD,” Phys. Part. Nucl. Lett. 11, 467–472 (2014).

    Article  Google Scholar 

  29. V. M. Bystritsky, Vit. Bystritskii, G. N. Dudkin, M. Filipovich, Sh. Gazhi, I. Guran, G. A. Mesyats, B.A.Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Filippov, and Yu. Zh. Tuleushev, “First experimental evidence of d(d, γ)3 He reaction in titanium deuteride in ultralow collision energy region,” J. Exp. Theor. Phys. 119, 54 (2014).

    Article  ADS  Google Scholar 

  30. V. M. Bystritsky and F. M. Pen’kov, “Analytic estimates of the product yields for nuclear reaction in the ultralow energy range,” Phys. At. Nucl. 66, 77–82 (2003).

    Google Scholar 

  31. Vyach. M. Bystritsky, Vit. M. Bystritskii, L. D. Butakov, V. V. Gerasimov, G. N. Dudkin, A. R. Krylov, B. A. Nechaev, V. N. Padalko, S. S. Parzhitski, A. V. Petrov, N. M. Polkovnikova, and J. Wozniak, “Study of the reactions between light nuclei in the astrophysical energy using the plasma Hall accelerator,” in Proceedings of the 11th International Seminar on Electromagnetic Interactions of Nuclei EMIN-2006, Moscow, Russia, 2006.

    Google Scholar 

  32. L. D. Butakov, G. N. Dudkin, B. A. Nechaev, et al., Bull. Russ. Acad. Sci.: Phys. 71, 1640 (2007).

    Article  Google Scholar 

  33. V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, P. S. Anan’in, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, M. Filipovicz, J. Wozniak, and Vit. M. Bystritskii, Eur. Phys. J. A 36, 151 (2008).

    Article  ADS  Google Scholar 

  34. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, V. V. Gerasimov, A. R. Krylov, G. A. Mesyats, B.A.Nechaev, V. M. Padalko, S. S. Parzhitsky, F. M. Pen’kov, N. A. Ratakhin, V. A. Stolupin, and J. Wozniak, Nucl. Instrum. Methods Phys. Res. A 565, 864 (2006).

    Article  ADS  Google Scholar 

  35. V. M. Bystritsky, Vit. M. Bystritskii, J. Wozniak, S. Gazi, J. Huran, A. P. Kobzev, G. N. Dudkin, A. P. Kobzev, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, Yu. Zh. Tuleushev, A. V. Philippov, and M. Filipowicz, Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (11/2), 11 (2012).

    Google Scholar 

  36. V. M. Bystritsky, Vit. M. Bystritskii, V. L. Kaminskii, A. V. Kozhevnikov, S. I. Kuznetsov, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, and M. Filipowicz, Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (11/2), 51 (2012).

    Google Scholar 

  37. Vit. Bystritskii, E. Garate, N. Rostoker, Y. Song, A. van Drie, M. Anderson, A. Qerushi, S. Dettrick, M. Binderbauer, J. K. Walters, V. Matvienko, A. Petrov, A. Shlapakovsky, N. Polkovnikova, and I. Isakov, J. Appl. Phys. 96, 1249 (2004).

    Article  ADS  Google Scholar 

  38. B. A. Nechaev, G. N. Dudkin, V. L. Kaminsky, V. N. Padalko, A. V. Petrov, V. M. Bystritsky, V. V. Gerasimov, S. S. Parzycki, Vit. M. Bystritskii, and J. Wozniak, in Proceedings of the 15th International Symposium on High-Current Electronics (Inst. Atmosf. Opt. Sib. Otdel. RAN, Tomsk, 2008), p.148.

    Google Scholar 

  39. A. P. Kobzev, J. Huran, D. Maczka, and M. Turek, Vacuum 83, S124 (2009).

    Article  Google Scholar 

  40. Wei-Kan Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic, New York, San Francisco, London, 1978).

    Google Scholar 

  41. H. Yagi, K. Tanida, K. Nishimura, A. Hatta, T. Ito, and A. Hiraki, Jpn. J. Appl. Phys. 34, L577 (1995).

  42. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, New York, 1983).

    Google Scholar 

  43. F. Raiola, L. Gang, C. Bonomo, G. Gyurky, M. Aliotta, H. W. Becker, R. Bonetti, C. Broggini, P. Corvisiero, A.D’Onofrio, Z. Fulop, G. Gervino, L. Gialanella, M. Junker, P. Prati, et al., Eur. Phys. J. A 19, 283 (2004).

    Article  ADS  Google Scholar 

  44. C. Bonomo, G. Fiorentini, Z. Fulop, L. Gang, G. Gyurky, K. Langanke, F. Raiola, C. Rolfs, E. Somorjai, F. Strieder, J. Winter, and M. Aliotta, Nucl. Phys. A 719, 37 (2003).

    Article  ADS  Google Scholar 

  45. K. Czerski, A. Huke, P. Heide, and G. Schiwietz, Nucl. Instrum. Methods Phys. Res. B 193, 183 (2002).

    Article  ADS  Google Scholar 

  46. K. Czerski, A. Huke, P. Heide, and G. Ruprecht, Europhys. Lett. 68, 363 (2004).

    Article  ADS  Google Scholar 

  47. F. Raiola, P. Migliardi, G. Gyurky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, J. Cruz, A. D’Onofrio, Z. Fulop, G. Gervino, L. Gialanella, et al., “Enhanced electron screening in d(d, p)t for deuterated Ta,” Eur. Phys. J. A 13, 377 (2002).

    Article  ADS  Google Scholar 

  48. H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).

    Article  ADS  Google Scholar 

  49. U. Greife, F. Gorris, M. Junker, C. Rolfs, and D. Zahnow, Z. Phys. A 351, 107 (1995).

    Article  ADS  Google Scholar 

  50. F. Raiola, L. Gang, C. Bonomo, G. Gyurky, M. Aliotta, H. W. Becker, R. Bonetti, C. Broggini, P. Corvisiero, A. D’Onofrio, Z. Fulop, G. Gervino, L. Gialanella, M. Junker, P. Prati, et al., Eur. Phys. J. A 19, 283 (2004).

    Article  ADS  Google Scholar 

  51. F. Raiola, B. Burchard, Zs. Fulop, Gy. Gyurky, S. Zeng, J. Cruz, A. di Leva, B. Limata, M. Fonseca, H. Luis, M. Aliotta, H. W. Becker, C. Broggini, A. D’Onofrio, L. Gialanella, et al., Eur. Phys. J. A 27, 79 (2006).

    Article  ADS  Google Scholar 

  52. A. Huke, K. Czerski, and P. Heide, Nucl. Instrum. Methods Phys. Res. B 256, 599 (2007).

    Article  ADS  Google Scholar 

  53. K. Czerski, A. Huke, P. Heide, and G. Ruprecht, Europhys. Lett. 68, 363 (2004).

    Article  ADS  Google Scholar 

  54. C. Bonomo, G. Fiorentini, Z. Fulop, L. Gang, G. Gyurky, K. Langanke, F. Raiola, C. Rolfs, E. Somorjai, F. Strieder, J. Winter, and M. Aliotta, Nucl. Phys. A 719, 37 (2003).

    Article  ADS  Google Scholar 

  55. K. Czerski, A. Huke, P. Heide, and G. Schiwietz, Nucl. Instrum. Methods Phys. Res. B 193, 183 (2002).

    Article  ADS  Google Scholar 

  56. F. Raiola, P. Migliardi, G. Gyurky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, J. Cruz, A. D’Onofrio, Z. Fulop, G. Gervino, L. Gialanella, et al., “Enhanced electron screening in d(d, p)t for deuterated Ta,” Eur. Phys. J. A 13, 377 (2002).

    Article  ADS  Google Scholar 

  57. E. E. Salpeter, Aust. J. Phys. 7, 373 (1954)

    Article  MATH  ADS  Google Scholar 

  58. H. J. Assenbaum, K. Langanke, and C. Rolfs, Z. Phys. A: At. Nucl. 327, 461 (1987).

    ADS  Google Scholar 

  59. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).

    Google Scholar 

  60. H. Yuki, J. Kasagi, A. G. Lipson, T. Ohtsuki, T. Baba, T. Noda, B. F. Lyakhov, and N. Asami, JETP Lett. 68, 823 (1998).

    Article  ADS  Google Scholar 

  61. J. Lindhard, Mat.-Fis. Medd. Dan. Vid. Selsk. 34 (14), 1 (1965).

    Google Scholar 

  62. J. F. Ziegler and J. P. Biersack, Computer code SRIM (2008). www.srim.org

    Google Scholar 

  63. B. A. Nechaev, G. N. Dudkin, V. N. Padalko, A. V. Petrov, V. I. Veretelnik, V. M. Bystritsky, V. V. Gerasimov, S. S. Parzycki, Vit. M. Bystritskii, and J. Wozniak, in Proceedings of the 15th International Sympoisum on High current Electronics (Inst. Atmosf. Opt. Sib. Otdel. RAN, Tomsk, 2008), p.151.

    Google Scholar 

  64. W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hydrides (Academic, New York, London, 1968).

    Google Scholar 

  65. M. Filipowicz, V. M. Bystritsky, G. N. Dudkin, F. M. Pen’kov, and A. V. Philippov, Int. J. Mod. Phys. E 21, 1250089 (2012).

    Article  ADS  Google Scholar 

  66. C. Casella, H. Costantini, and A. Lemut, Nucl. Phys. A 706, 203 (2002).

    Article  ADS  Google Scholar 

  67. G. M. Griffiths, M. Lal, and C. D. Scarfe, Can. J. Phys. 41, 724 (1963).

    Article  ADS  Google Scholar 

  68. G. J. Schmid, B. J. Rice, M. A. Godwin, G. C. Kiang, L. L. Kiang, C. M. Laymon, R. M. Prior, D. R. Tilley, and H. R. Weller, Phys. Rev. C 56, 2565 (1997).

    Article  ADS  Google Scholar 

  69. V. M. Bystritsky, V. V. Gerasimov, A. R. Krylov, S. S. Parzhitskii, G. N. Dudkin, V. L. Kaminskii, B. A. Nechaev, V. N. Padalko, A. V. Petrov, G. A. Mesyats, M. Filipowicz, J. Wozniak, and Vit. M. Bystritskii, Nucl. Instrum. Methods Phys. Res. A 595, 543–548 (2008).

    Article  ADS  Google Scholar 

  70. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, V. V. Gerasimov, A. R. Krylov, G. A. Mesyats, B. A. Nechaev, V. M. Padalko, S. S. Parzhitsky, F. M. Penkov, N. A. Ratakhin, and J. Wozniak, Phys. At. Nucl. 68, 1777 (2005).

    Article  Google Scholar 

  71. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, V. V. Gerasimova, A. R. Krylova, G. A. Mesyats, B.A.Nechaev, V. M. Padalko, S. S. Parzhitsky, F. M. Pen’kov, N. A. Ratakhin, V. A. Stolupin, and J. Wozniak, “Application of inverse Z-pinch for study of the pd reaction at keV energy range,” Nucl. Instrum. Methods Phys. Res. A 565, 864 (2006).

    Article  ADS  Google Scholar 

  72. M. Viviani, R. Schiavilla, and A. Kievsky, “Theoretical study of the radiative capture reactions 2H(n, γ)3H and 2H(p, γ)3He at low energies,” Phys. Rev. C 54, 553 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bystritskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystritskii, V.M., Dudkin, G.N., Filipowicz, M. et al. Effect of pd and dd reactions enhancement in deuterides TiD2, ZrD2 and Ta2D in the astrophysical energy range. Phys. Part. Nuclei Lett. 13, 79–97 (2016). https://doi.org/10.1134/S1547477116010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116010064

Keywords

Navigation