Skip to main content
Log in

Model of vectorlike technicolor

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The authors consider the mechanism of formation of techniquark states which have a vectorlike interaction with the standard bosons. It is shown that the simplest variant of the vectorlike technicolor does not contradict to the new physics restrictions. It is suggested that the technibaryon scalar states are regarded as dark matter candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (SMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30–61 (2012).

    Article  ADS  Google Scholar 

  3. ATLAS Collab., “Constraints on new phenomena via Higgs coupling measurements with ATLAS detector,” ATLAS-CONF-2014-010 (CERN, Genewa, 2014).

    Google Scholar 

  4. S. Weinberg, “Implication of dynamical symmetry breaking,” Phys. Rev. D: Part. Fields 13, 974996 (1976).

    ADS  Google Scholar 

  5. L. Susskind, “Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,” Phys. Rev. D: Part. Fields 20, 2619–2625 (1979).

    ADS  Google Scholar 

  6. E. H. Simmons, “Phenomenology of a technicolor model with heavy scalar doublet,” Nucl. Phys. B 312, 253–268 (1989).

    Article  ADS  Google Scholar 

  7. S. Samuel, “Bosonic technicolor,” Nucl. Phys. B 347, 625–650 (1990).

    Article  ADS  Google Scholar 

  8. A. Kagan and S. Samuel, “Renormalization group aspects of bosonic technicolor,” Phys. Lett. B 270, 37–44 (1991).

    Article  ADS  Google Scholar 

  9. C. D. Carone, “Technicolor with a 125 GeV Higgs boson,” Phys. Rev. D: Part. Fields 86, 055011 (2012).

    Article  ADS  Google Scholar 

  10. S. Dimopoulos and L. Susskind, “Mass without scalars,” Nucl. Phys. B 155, 237–252 (1979).

    Article  ADS  Google Scholar 

  11. E. Eichten and K. D. Lane, “Dynamical breaking of weak interaction Symmetries,” Phys. Lett. B 90, 125–130 (1980).

    Article  ADS  Google Scholar 

  12. M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D: Part. Fields 46, 381–409 (1992).

    ADS  Google Scholar 

  13. F. Sannino, “Conformal dynamics for TeV physics and cosmology,” Acta Phys. Polon. B 40, 3533–3744 (2009).

    Google Scholar 

  14. T. W. Appelquist, D. Karabali, and L. C. R. Wijewardhana, “Chiral hierarchies and flavor-changing neutral currents in hypercolor,” Phys. Rev. Lett. 57, 957–960 (1986).

    Article  ADS  Google Scholar 

  15. F. Sannino and K. Tuominen, “Orienfold theory dynamics and symmetry breaking,” Phys. Rev. D: Part. Fields 71, 051901(R) (2005).

    Article  ADS  Google Scholar 

  16. R. Foadi, M. T. Frandsen, T. A. Ryttov, and S. Sannino, “Minimal walking technicolor: setup for collider physics,” Phys. Rev. D: Part. Fields 76, 055005 (2007).

    Article  ADS  Google Scholar 

  17. R. Pasechnik, V. Beylin, V. Kuksa, and G. Vereshkov, “Chiral-symmetric technicolor with standard model Higgs,” Phys. Rev. D: Part. Fields 88, 075009 (2013).

    Article  ADS  Google Scholar 

  18. R. Pasechnik, V. Beylin, V. Kuksa, and G. Vereshkov, “Vector-like technineutron dark matter: is a QCD-type technicolor ruled out by XENON 100?,” Eur. Phys. J. C 74, 2728 (2014).

    Article  ADS  Google Scholar 

  19. M. K. Volkov and A. E. Radzhabov, “The NambuJona-Lasinio model and its development,” Phys. Usp. 49, 551 (2006).

    Article  ADS  Google Scholar 

  20. K. A. Olive et al. (Particle Data Group), “The review of particle physics,” Chin. Phys. C 38, 090001 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kuksa.

Additional information

Original Russian Text © V.A. Beylin, G.M. Vereshkov, V.I. Kuksa, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beylin, V.A., Vereshkov, G.M. & Kuksa, V.I. Model of vectorlike technicolor. Phys. Part. Nuclei Lett. 13, 19–25 (2016). https://doi.org/10.1134/S1547477116010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116010039

Keywords

Navigation