Skip to main content
Log in

The energy eigenvalues of Dirac equation with the modified Eckart and modified deformed Hylleraas potential by shape invariance approach

  • Physics of elementary particles and atomic nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

By using the supersymmetry quantum mechanics method, we approximately solve the Dirac equation for the modified Eckart potential and the modified deformed Hylleraas including Coulomb-like tensor potential under spin and pseudospin symmetry. We obtained approximate energy eigenvalues and the corresponding wave functions in terms of the Jacobi polynomial under the spin and pseudospin symmetries limit. In order to test the accuracy of our work, we compared our numerical results with that Nikiforov-Uvarov (NU) method. This shows that our results are consistent with those found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lisboa, M. Malheiro, A. S. de Castro, P. Alberto, and M. Fiolhais, “Pseudospin symmetry and the relativistic harmonic oscillator,” Phys. Rev. C 69, 024319 (2004).

    Article  ADS  Google Scholar 

  2. S. Zarrinkamar, A. A. Rajabi, and H. Hassanabadi, “Dirac equation for the harmonic scalar and vector potentials and linear plus Coulomb-like tensor potential the SUSY approach,” Ann. Phys. (N.Y.) 325, 2522 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J. N. Ginocchio, “U(3) and pseudo-U(3) symmetry of the relativistic harmonic oscillator,” Phys. Rev. Lett. 95, 252501 (2005).

    Article  ADS  Google Scholar 

  4. S. Arbabi Moghadam, H. Mehraban, and M. Eshghi, “Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach,” Chin. Phys. B 22, 100305 (2013).

    Article  Google Scholar 

  5. J. Y. Gou, X. Z. Fang, and F. X. Xu, “Pseudospin symmetry in the relativistic harmonic oscillator,” Nucl. Phys. A 757, 411 (2005).

    Article  ADS  Google Scholar 

  6. M. Eshghi, “Makarov potential in relativistic equation via Laplace transformation approach,” Can. J. Phys. 91, 71 (2013).

    Article  Google Scholar 

  7. A. S. de Castro, P. Alberto, R. Lisboa, and M. Malheiro, “Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: the case of the relativistic harmonic oscillator,” Phys. Rev. C 73, 054309 (2006).

    Article  ADS  Google Scholar 

  8. M. Eshghi and H. Mehraban, “Solution of the Dirac equation with position-dependent mass for Q-parameter modified Pöschl–Teller and Coulomb-like tensor potential,” Few-Body Syst. 52, 41 (2012).

    Article  ADS  Google Scholar 

  9. M. C. Zhang, G. H. Sun, and S. H. Dong, “Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential,” Phys. Lett. A 374, 704 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. M. Eshghi, “Pseudo-harmonic oscillatory ring-shaped potential in a relativistic equation,” Chin. Phys. Lett. 29, 110304 (2012).

    Article  ADS  Google Scholar 

  11. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, and H. Rahimov, “An approximate solution of the Dirac equation for hyperbolic scalar and vector potentials and a Coulomb tensor interaction by SUSYQM,” Mod. Phys. Lett. A 26, 2703 (2011).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. S. H. Dong, “A new quantization rule to the energy spectra for modified hyperbolic-type potentials,” Int. J. Quantum. Chem. 109, 701 (2009).

    Article  ADS  Google Scholar 

  13. J. Y. Gou and Z. Q. Sheng, “Solution of the Dirac equation for the Woods–Saxon potential with spin and pseudospin symmetry,” Phys. Lett. A 338, 90 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  14. G. F. Wei and S. H. Dong, “Spin symmetry in the relativistic symmetrical well potential including a proper approximation to the spin–orbit coupling term,” Phys. Scr. 81, 035009 (2010).

    Article  ADS  Google Scholar 

  15. J. Y. Gou, J. C. Han, and R. D. Wang, “Pseudospin symmetry and the relativistic ring-shaped non-spherical harmonic oscillator,” Phys. Lett. A 353, 378 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  16. C. S. Jia, T. Chen, and L. G. Gui, “Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term,” Phys. Lett. A 373, 1621 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. C. Berkdemir, “Pseudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term,” Nucl. Phys. A 770, 32 (2006).

    Article  ADS  Google Scholar 

  18. M. Eshghi and M. Hamzavi, “Spin symmetry in Diracattractive radial problem and tensor potential,” Commun. Theor. Phys. 57, 355 (2012).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. W. C. Qiang, R. S. Zhou, and Y. Gao, “Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry,” J. Phys. A: Math. Theor. 40, 11119 (2007)

    Article  MathSciNet  Google Scholar 

  20. W. C. Qiang, R. S. Zhou, and Y. Gao, J. Phys. A: Math. Theor. 40, 1677 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. M. Ikhdair and R. Sever, “Application?of the inversion method to the heavy quarkonium systems,” Appl. Math. Commun. 216, 545 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  22. O. Bayrak and I. Boztosun, “The pseudospin symmetric solution of the Morse potential for any κ State,” J. Phys. A: Math. Theor. 40, 11119 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. G. F. Wei and S. H. Dong, “Approximately analytical solutions of the Manning–Rosen potential with the spin–orbit coupling term and spin symmetry,” Phys. Lett. A 373, 49 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. C. S. Jia, P. Guo, and X. L. Peng, “Exact solution of the Dirac–Eckart problem with spin and pseudospin symmetry,” J. Phys. A: Math. Gen. 39, 7737 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. C. S. Jia, J. Y. Liu, L. He, and L. T. Sun, “Pseudospin symmetry in the relativistic empirical potential as a diatomic molecular model,” Phys. Scr. 75, 388 (2007).

    Article  MATH  ADS  Google Scholar 

  26. C. S. Jia, P. Guo, Y. F. Diao, L. Z. Yi, and X. J. Xie, “Solutions of Dirac equations with the Pöschl-Teller potential,” Eur. Phys. J. A 34, 41 (2007).

    Article  ADS  Google Scholar 

  27. Y. P. Varshni, “Comparative study of potential energy functions for diatomic molecules,” Rev. Mod. Phys. 29, 664 (1957).

    Article  ADS  Google Scholar 

  28. E. A. Hilleraas, “Energy formula and potential distribution of diatomic molecules,” J. Chem. Phys. 3, 595 (1935).

    Article  ADS  Google Scholar 

  29. A. N. Ikot, O. A. Awoga, and A. D. Antia, “Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential,” Chin. Phys. B 22, 020304 (2013).

    Article  Google Scholar 

  30. S. H. Dong, W. C. Qiang, G. H. Sun, and V. B. Bezerra, “Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential,” J. Phys. A 40, 10535 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. H. Hassanabadi, E. Maghsoodi, N. Ikot Akpan, and S. Zarrinkamar, “Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method,” Appl. Math. Comput. 219, 9388 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Hamzavi, A. A. Rajabi, and H. Hassanabadi, “Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method,” Phys. Lett. A 374, 4303 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. H. Akçay and C. Tezcan, “Exact solutions of the Dirac equation with harmonic oscillator potential including a Coulomb-like tensor potential,” Int. J. Mod. Phys. C 20, 931 (2009).

    Article  MATH  ADS  Google Scholar 

  34. S. M. Ikhdair and R. Sever, “Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential,” Appl. Math. Commun. 216, 911 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  35. W. Greiner, Relativistic Quantum Mechanics-Wave Equation, 3rd ed. (Springer, Berlin, 2000).

    Book  Google Scholar 

  36. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    Google Scholar 

  37. J. N. Ginocchio, “The relativistic foundations of pseudospin symmetry in nuclei,” Nucl. Phys. A 654, 663 (1999).

    Article  ADS  Google Scholar 

  38. J. N. Ginocchio, “A relativistic symmetry in nuclei,” Phys. Rep. 315, 231 (1999).

    Article  ADS  Google Scholar 

  39. L. E. Gendenshtein, “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry,” JETP Lett. 38, 356 (1983).

    ADS  Google Scholar 

  40. F. Cooper, A. Khare, and U. Sukhatme, “Supersymmetry and quantum mechanics,” Phys. Rep. 251, 276 (1995).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arbabi Moghadam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, S.A., Mehraban, H. & Khoshmehr, H.H. The energy eigenvalues of Dirac equation with the modified Eckart and modified deformed Hylleraas potential by shape invariance approach. Phys. Part. Nuclei Lett. 12, 667–679 (2015). https://doi.org/10.1134/S154747711505009X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711505009X

Keywords

Navigation