Skip to main content
Log in

New algorithm for simulation of 3D classical spin glasses under the influence of external electromagnetic fields

  • Mathematical Modeling and Computational Physics 2013 Dubna, Russia, July 8–July 12, 2013
  • Computer Technologies in Physics
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We study statistical properties of 3D classical spin-glass under the influence of external fields. It is proved that in the framework of the nearest-neighboring model 3D spin-glass problem at performing of Birkhoff’s ergodic hypothesis regarding to orientations of spins in the 3D space can be reduced to the problem of disordered 1D spatial spin-chains (SSC) ensemble where each spin-chain interacts with a random environment. The 1D SSC is defined as a periodic 1D lattice, where spins in nodes are randomly oriented in 3D space, in addition they all interact with each other randomly. For minimization of the Hamiltonian in an arbitrary node of the 1D lattice lattice, we obtained recurrent equations and corresponding Sylvester criterion, which allow to find energy local minimum. On the bases of these equations the high-performance parallel algorithm is developed which allows to calculate all statistical parameters of 3D spin glass, including distribution of a constant of spin-spin interaction, from the first principles of the classical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Binder and A. P. Young, “Spin glasses: experimental facts, theoretical concepts and open questions,” Rev. Mod. Phys. 58, 801–976 (1986).

    Article  ADS  Google Scholar 

  2. G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    MATH  Google Scholar 

  3. Spin Glasses and Random Fields, Ed. by A. P. Young (World Scientific, Singapore, 1998).

    Google Scholar 

  4. R. Fisch and A. B. Harris, “Spin-glass model in continuous dimensionality,” Phys. Rev. Lett. 47, 620 (1981).

    Article  ADS  Google Scholar 

  5. C. Ancona-Torres, D. M. Silevitch, G. Aeppli, and T. F. Rosenbaum, “Quantum and classical glass transitions in LiHoxY1-XF4,” Phys. Rev. Lett. 101, 057201 (2008).

    Article  ADS  Google Scholar 

  6. A. Bovier, Statistical Mechanics of Disordered Systems: A Mathematical Perspective, Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge, 2006), p. 308.

    Book  Google Scholar 

  7. Y. Tu, J. Tersoff, and G. Grinstein, “Properties of a continuous-random-network model for amorphous systems,” Phys. Rev. Lett. 81, 4899–4902 (1998).

    Article  ADS  Google Scholar 

  8. K. V. R. Chary and G. Govil, NMR in Biological Systems: From Molecules to Human (Springer, 2008), p. 511.

    Book  Google Scholar 

  9. E. Baake, M. Baake, and H. Wagner, “Ising quantum chain is a equivalent to a aodel of biological evolution,” Phys. Rev. Lett. 78, 559–562 (1997).

    Article  ADS  Google Scholar 

  10. I. Giardina, Random Fields and Spin Glasses: A Field Theory Approach (Cambridge Univ. Press, Cambridge, 2006), p. 230.

    Google Scholar 

  11. P. Contucci and C. Giardina, Perspectives on Spin Glasses (Cambridge Univ. Press, Cambridge, 2012), p. 217.

    Book  Google Scholar 

  12. D. Sherrington and S. Kirkpatrick, “A solvable model of a spin-glass,” Phys. Rev. Lett. 35, 1792–1796 (1975).

    Article  ADS  Google Scholar 

  13. A. S. Gevorkyan, “Quantum 3D spin-glass system on the scales of space-time periods of external electromagnetic fields,” Phys. At. Nucl. 75, 1253–1265 (2012).

    Article  Google Scholar 

  14. B. Derrida, “Random-energy model: an exactly solvable model of disordered systems,” Phys. Rev. B 24, 2613–2626 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Parisi, “Infinite number of order parameters for spin-glasses,” Phys. Rev. Lett. 43, 1754–1756 (1979).

    Article  ADS  Google Scholar 

  16. A. J. Bray and M. A. Moore, “Replica-symmetry breaking in spin-glass theories,” Phys. Rev. Lett. 41, 1068–1072 (1978).

    Article  ADS  Google Scholar 

  17. J. F. Fernandez and D. Sherrington, “Randomly located spins with oscillatory interactions,” Phys. Rev. B 18, 6270–6274 (1978).

    Article  ADS  Google Scholar 

  18. F. Benamira, J. P. Provost, and G. J. Vallèe, “Separable and non-separable spin glass models,” J. Phys. 46, 1269–1275 (1985).

    Article  Google Scholar 

  19. D. Grensing and R. Kühn, “On classical spin-glass models,” J. Phys. 48, 713–721 (1987).

    Article  Google Scholar 

  20. A. S. Gevorkyan, H. G. Abajyan, and E. A. Ayryan, “On modeling of statistical properties of classical 3D spin glasses,” Bull. PFUR. Ser. Mathem. Inform. Sci. Phys., No. 4, 91–103 (2011).

    Google Scholar 

  21. A. S. Gevorkyan and H. G. Abajyan, “Classical spin glass system in external fields with taking into account relaxation effects,” Phys. At. Nucl. 76, 1015 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ayryan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayryan, E.A., Gevorkyan, A.S. & Sahakyan, V.V. New algorithm for simulation of 3D classical spin glasses under the influence of external electromagnetic fields. Phys. Part. Nuclei Lett. 12, 380–384 (2015). https://doi.org/10.1134/S154747711503005X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711503005X

Keywords

Navigation