Skip to main content
Log in

Mach’s principle for cosmological solutions in relativistic theory of gravity

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Mach’s principle in the relativistic theory of gravity (RTG) allows preliminarily selecting all possible solutions of the theory, including cosmological ones. It is shown that Mach’s principle in the RTG with massive gravitons admits only flat and open universe evolution scenarios, excluding the closed universe version. Unlike a standard cosmological solution in the RTG containing only a single free constant to be constrained from above by the causality principle, the most general flat scenario should have two parameters. It is shown that the second constant does not significantly affect realistic cosmological solutions. The open scenario for massless graviton theory is ruled out by the causality principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Logunov, Relativistic Theory of Gravitation (Nauka, Moscow, 2006).

    Google Scholar 

  2. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, “Graviton mass and evolution of a Friedmann Universe,” Teor. Mat. Fiz. 74(1), 1–10 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. Yu. V. Chugreev, “Cosmological consequences of the relativistic theory of gravitation with massive gravitons,” Teor. Mat. Fiz. 79(2), 554–558 (1989).

    Article  MATH  Google Scholar 

  4. M. A. Mestvirishvili and Yu. V. Chugreev, “Friedmann model of evolution of the Universe in the relativistic theory of gravitation,” Theor. Mat. Phys. 80(2), 305–312 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Yu. Emel’yanov and Yu. V. Chugreev, “Evolution of Friedmann Universe in the relativistic theory of gravitation based on spaces of constant curvature,” Teor. Mat. Fiz. 97(3), 1409–1420 (1993).

    Article  MathSciNet  Google Scholar 

  6. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Evolution of the Universe and graviton mass,” Phys. At. Nucl. 61(8), 1420 (1998).

    Google Scholar 

  7. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Generation of gravitons in a hot homogeneous and isotropic Universe,” Dokl. Akad. Nauk. 381(2), 185–187 (2001).

    MATH  Google Scholar 

  8. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Graviton mass and the total relative mass density Ωtot in the Universe,” Dokl. Akad. Nauk. 390(6), 755–757 (2003).

    MATH  Google Scholar 

  9. S. S. Gershtein, et al., “Graviton mass, quintessence and oscillatory character of the universe evolution,” Phys. At. Nucl. 67(8), 1596–1604 (2004).

    Article  MathSciNet  Google Scholar 

  10. Yu. V. Chugreev, “Is the causality principle violated for gravitational waves?,” Teor. Mat. Fiz. 138(2), 292–296 (2004).

    Article  MathSciNet  Google Scholar 

  11. M. A. Mestvirishvili, K. A. Modestov, and Yu. V. Chugreev, “Quintessence scalar field in the relativistic theory of gravity,” Teor. Mat. Fiz. 152(3), 1342–1350 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Gravitational field self-limitation and its role in the Universe,” Sov. Phys. Usp. 49(11), 1179–1195 (2006).

    Article  Google Scholar 

  13. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Cosmological constant and Minkowski space,” Phys. Part. Nucl. 38(3), 291–298 (2007).

    Article  Google Scholar 

  14. Yu. V. Chugreev, “The vacuum cosmological solution is unique in the relativistic theory of gravity,” Teor. Mat. Fiz. 161(1), 1420–1423 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Z. Petrov, New Methods in General Relativity (Nauka, Moscow, 1966).

    Google Scholar 

  16. D. Sciama, “On the origin of inertia,” Mon. Not. Roy. Astron. Soc. 113(1), 34–42 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. C. H. Brans, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 125(6), 2194–2201 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. A. Logunov, Lectures on the Theory of Relativity and Gravitation: Contemporary analysis of the problem (Nauka, Moscow, 1987).

    Google Scholar 

  19. A. A. Logunov and Yu. V. Chugreev, “Special relativity theory and the Sagnac effect,” Sov. Phys. Usp. 31, 861 (1988).

    Article  ADS  Google Scholar 

  20. A. A. Logunov and Yu. V. Chugreev, “Special relativity and centrifuge experiments,” Moscow Univ. Phys. Bull. 29(1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Chugreev.

Additional information

Original Russian Text © Yu.V. Chugreev, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugreev, Y.V. Mach’s principle for cosmological solutions in relativistic theory of gravity. Phys. Part. Nuclei Lett. 12, 195–204 (2015). https://doi.org/10.1134/S1547477115020090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115020090

Keywords

Navigation