Skip to main content
Log in

Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death

  • Radiobiology, Ecology and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous study revealed non-linear dose-response relationship for cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In present study we used the mouse model for MNU-induced retinal degeneration to evaluate adaptive response of retina to proton irradiation and implication in it of glial Muller cells. The data showed that the recovery of retina after genotoxic agents has been associated with increased efficacy of DNA damage repair and lowered death of retinal photoreceptor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Gorgels, I. van der Pluijm, R. M. Brandt, G. A. Garinis, H. van Steeg, G. van den Aardweg, G. H. Jansen, J. M. Ruijter, A. A. Bergen, D. van Norren, J. H. Hoeijmakers, and G. T. van der Horst, “Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for cockayne syndrome,” Mol. Cell. Biol. 27(4), 1433 (2007).

    Article  Google Scholar 

  2. M. Yu. Loginova, V. A. Tronov, T. A. Beletskaya, E. B. Fel’dman, I. G. Panova, and M. A. Ostrovsky, “Retina radioresistance: whole-body exposure of mice to gamma-irradiation induces the retina DNA damage, accumulation of p53 protein followed by DNA repair rather than the apoptosis,” Radiat. Biol. Radioekol. 48(6), 698 (2008).

    Google Scholar 

  3. L. W. Brady, “Ocular complications of high-dose radiotherapy,” Oncology (Williston Park) 10(7), 981 (1996).

    Google Scholar 

  4. S. Barabino, A. Raghavan, J. Loeffler, and R. Dana, “Radiotherapy-induced ocular surface disease,” Cornea 24(8), 909 (2005).

    Article  Google Scholar 

  5. R. Hazin, J. Y. Abuzetun, Y. J. Daoud, and M. M. Abu-Khalaf, “Ocular complications of cancer therapy: a primer for the ophthalmologist treating cancer patients,” Curr. Opin. Ophthalmol. 20(4), 308 (2009).

    Article  Google Scholar 

  6. J. H. Salvin and D. Hendricks, “Ophthalmology manifestations of pediatric cancer treatment,” Curr. Opin. Ophthalmol. 23(5), 394 (2012).

    Article  Google Scholar 

  7. A. T. Monroe, N. Bhandare, C. G. Morris, and W. M. Mendenhall, “Preventing radiation retinopathy with hyperfractionation,” Int. J. Radiat. Oncol. Biol. Phys. 61(3), 856 (2005).

    Article  Google Scholar 

  8. N. Bhandare, A. T. Monroe, C. G. Morris, M. T. Bhatti, and W. M. Mendenhall, “Does altered fractionation influence the risk of radiation-induced optic neuropathy?” Int. J. Radiat. Oncol. Biol. Phys. 62(4), 1070 (2005).

    Article  Google Scholar 

  9. Committee on the Evaluation of Radiation Shielding for Space Exploration, National Research Council, Managing Space Radiation Risk in the New Era of Space Exploration. http://www.nap.edu/open-book.php?record_id=12045&displayrelated=22.

  10. X. W. Mao, M. J. Pecaut, L. S. Stodieck, V. L. Ferguson, T. A. Bateman, M. Bouxsein, T. A. Jones, M. Moldovan, C. E. Cunningham, J. Chieu, and D. S. Gridley, “Spaceflight environment induces mitochondrial oxidative damage in ocular tissue,” Radiat. Res. 180(4), 340 (2013).

    Article  Google Scholar 

  11. J. Tombran-Tink and C. J. Bamstable, “Space flight environment induces degeneration in the retina of rat neonates,” Adv. Exp. Med. Biol. 572, 417 (2006).

    Article  Google Scholar 

  12. T. H. Mader, C. R. Gibson, A. F. Pass, A. G. Lee, H. E. Killer, H. C. Hansen, J. P. Dervay, M. R. Barratt, W. J. Tarver, A. E. Sargsyan, L. A. Kramer, R. Riascos, D. G. Bedi, and D. R. Pettit, “Optic disc edema in an astronaut after repeat long-duration space flight,” J. Neuroophthalmol. 33(3), 249 (2013).

    Article  Google Scholar 

  13. T. H. Mader, C. R. Gibson, A. F. Pass, L. A. Kramer, A. G. Lee, J. Fogarty, W. J. Tarver, J. P. Dervay, D. R. Hamilton, A. Sargsyan, J. L. Phillips, D. Tran, W. Lipsky, J. Choi, C. Stern, R. Kuyumjian, and J. D. Polk, “Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight,” Ophthalmology 118(10), 2058 (2011).

    Article  Google Scholar 

  14. P. S. Imperia, H. M. Lazarus, and J. H. Lass, “Ocular complications of systemic cancer chemotherapy,” Surv. Ophthalmol. 34(3), 209 (1989).

    Article  Google Scholar 

  15. T. Tweigeri, J. M. Nabholtz, and J. R. Mackey, “Ocular toxicity and cancer chemotherapy. A review,” Cancer 78(7), 1359 (1996).

    Article  Google Scholar 

  16. R. C. Eagle, Jr., C. L. Shields, C. Bianciotto, P. Jabbour, and J. A. Shields, “Histopathologic observations after intra-arterial chemotherapy for retinoblastoma,” Arch. Ophthalmol. 129(11), 1416 (2011).

    Article  Google Scholar 

  17. J. Giralt, A. Rey, R. Villanueva, S. Alforja, and R. P. Casaroli-Marano, “Severe visual loss in a breast cancer patient on chemotherapy,” Med. Oncol. 29(4), 2567 (2012).

    Article  Google Scholar 

  18. T. P. Williams, S. Henrich, and M. Reiser, “Effect of eye closures and openings on photostasis albino rats,” Invest. Ophtalmol. Vis. Sci. 39(3), 603 (1998).

    Google Scholar 

  19. G. Jovtchev, M. Menke, and I. Schubert, “The comet assay detects adaptation to MNU-induced DNA damage in barley,” Mutat. Res. 493(1–2), 95 (2001).

    Article  Google Scholar 

  20. G. Evensen and E. Seeberg, “Adaptation to alkylation resistance involves the induction of a DNA glycosylase,” Nature 296(5859), 773 (1982).

    Article  ADS  Google Scholar 

  21. A. Tsubura, Y. C. Lai, H. Miki, T. Sasaki, N. Uehara, T. Yuri, and K. Yoshizawa, “Review: Animal models of N-methyl-N-nitrosourea-induced mammary cancer and retinal degeneration with special emphasis on therapeutic trials,” In Vivo 25(1), 11 (2011).

    Google Scholar 

  22. V. A. Tronova, Yu. V. Vinogradova, M. Yu. Loginova, V. A. Poplinskaya, and M. A. Ostrovsky, “Mechanisms of radioresistance in terminally differentiated cells of mature retina,” Cell Tissue Biol. 54(3), 219 (2012).

    Article  Google Scholar 

  23. S. G. Wohl, S. W. Schmeer, T. Friese, O. W. Witte, and S. Isenmann, “In situ dividing and phagocytosing retinal microglia express nestin, vimentin, and NG2 in vivo,” PLoS ONE 6(8), 1 (2011).

    Article  Google Scholar 

  24. National Institutes of Health, Bethesda, MD, USA. http://rsb.info.nih.gov/ij/index.html.

  25. http://www.trevigen.com/item/3/13/118/508/TACS_2_TdT_Fluorescein_Kit.

  26. National Institutes of Health, Bethesda, MD, USA. http://rsb.info.nih.gov/ij/index.html.

  27. K. Końca, A. Lankoff, A. Banasik, H. Lisowska, T. Kuszewski, S. Góźdź, Z. Koza, and A. Wojcik, “Cross-platform public domain PC image-analysis program for the comet assay,” Mutation Res. 534(1–2), 15 (2003).

    Google Scholar 

  28. G. J. Jenkins, S. H. Doak, G. E. Johnson, E. Quick, E. M. Waters, and J. M. Parry, “Do dose response thresholds exist for genotoxic alkylating agents?” Mutagenesis 20(6), 389 (2005).

    Article  Google Scholar 

  29. G. E. Johnson, S. H. Doak, S. M. Griffiths, E. L. Quick, D. O. Skibinski, Z. M. Zaïr, and G. J. Jenkins, “Non-linear dose-response of DNA-reactive genotoxins: recommendations for data analysis,” Mutat. Res. 678(2), 95 (2009).

    Article  Google Scholar 

  30. Yu. V. Vinogradova, V. A. Tronov, K. N. Lyakhova, V. A. Poplinskaya, and M. A. Ostrovsky, “Damage and functional recovery of the mouse retina after exposure to genotoxic agents,” Radiat. Biol.: Radioekol. 54(4), 385 (2014).

    Google Scholar 

  31. S. Ooto, T. Akagi, R. Kageyama, J. Akita, M. Mandai, Y. Honda, and M. Takahashi, “Potential for neural regeneration after neurotoxic injury in the adult mammalian retina,” Proc. Natl. Acad. Sci. U. S. A. 101(37), 13654 (2004).

    Article  ADS  Google Scholar 

  32. A. V. Das, K. B. Mallya, X. Zhao, F. Ahmad, S. Bhattacharya, W. B. Thoreson, G. V. Hegde, and I. Ahmad, “Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling,” Dev. Biol. 299(1), 283 (2006).

    Article  Google Scholar 

  33. S. V. Razin and E. Yu. Yudinkova, “Large-scale DNA fragmentation during apoptosis: is the genome cleaved at the boundaries of the topological domains?” Biol. Bull., No. 2, 167 (1998).

    Google Scholar 

  34. J. Lips and B. Kaina, “DNA double strand breaks trigger apoptosis in p53-deficient fibroblasts,” Carcinogenesis 22(4), 579 (2001).

    Article  Google Scholar 

  35. L.-J. Mah, A. El-Osta, and T. C. Karagiannis, “γ-H2AX: a sensitive molecular marker of DNA damage and repair,” Leukemia 24(4), 679 (2010).

    Article  Google Scholar 

  36. A. Celeste, O. Fernandez-Capetillo, M. J. Kruhlak, et al., “Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks,” Nat. Cell Biol. 5(7), 675 (2003).

    Article  Google Scholar 

  37. T. Furuta, H. Takemura, Z. Y. Liao, G. J. Aune, C. Redon, O. A. Sedelnikova, D. R. Pilch, E. P. Rogakou, A. Celeste, H. T. Chen, A. Nussenzweig, M. I. Aladjem, W. M. Bonner, and Y. Pommier, “Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes,” J. Biol. Chem. 278(22), 20303 (2003).

    Article  Google Scholar 

  38. X. Li and W. D. Heyer, “Homologous recombination in DNA repair and DNA damage tolerance,” Cell Res. 18(1), 99 (2008).

    Article  Google Scholar 

  39. M. E. Lomax, S. Cunniffe, and P. O’Neill, “Efficiency of repair of an abasic site within DNA clustered damage sites by mammalian cell nuclear extracts,” Biochemistry 43(34), 11017 (2004).

    Article  Google Scholar 

  40. M. Yamada, F. L. Wong, S. Fujiwara, M. Akahoshi, and G. Suzuki, “Noncancer disease incidence in atomic bomb survivors, 1958–1998,” Radiat. Res. 161(6), 622 (2004).

    Article  Google Scholar 

  41. M. G. Anderson, R. T. Libby, D. B. Gould, R. S. Smith, and S. W. M. John, “High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma,” Proc. Natl. Acad. Sci. U. S. A. 102(12), 4566 (2005).

    Article  ADS  Google Scholar 

  42. A. Otani, H. Kojima, C. Guo, A. Oishi, and N. Yoshimura, “Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa,” Am. J. Pathol. 180(1), 328 (2012).

    Article  Google Scholar 

  43. D. M. Moshfeghi, P. K. Kaiser, and M. Gertner, “Stereotactic low-voltage X-ray irradiation for age-related macular degeneration,” Br. J. Ophthalmol. 95(2), 185 (2011).

    Article  Google Scholar 

  44. J. L. Cantley, J. Hanlon, E. Chell, C. Lee, W. C. Smith, and W. E. Bolch, “Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic X-ray radiosurgery of AMD,” Phys. Med. Biol. 58(19), 6887 (2013).

    Article  Google Scholar 

  45. M. P. Avila, M. E. Farah, A. Santos, Z. Kapran, J. P. Duprat, B. W. Woodward, and J. Nau, “Twelvemonth safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD,” Retina 29(2), 157 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Vinogradova.

Additional information

Original Russian Text © V.A. Tronov, Yu.V. Vinogradova, V.A. Poplinskaya, E.I. Nekrasova, M.A. Ostrovsky, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronov, V.A., Vinogradova, Y.V., Poplinskaya, V.A. et al. Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death. Phys. Part. Nuclei Lett. 12, 173–183 (2015). https://doi.org/10.1134/S1547477115010227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115010227

Keywords

Navigation