Skip to main content
Log in

Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Guler et al. (OPERA Collaboration), “An appearance experiment to search for ν μ → ν τ oscillations in the CNGS beam: Experimental proposal,” CERN-SPSC-2000-028 (CERN, Geneva, 2000) [LNGS-P25-00].

    Google Scholar 

  2. N. Agafonova et al. (OPERA Collaboration), “Search for the ν μ → ν τ oscillation with the OPERA hybrid detector,” Phys. Part. Nucl. 44, 703–727 (2013).

    Article  Google Scholar 

  3. R. Acquafredda et al. (OPERA Collaboration), “The OPERA experiment in the CERN to Gran Sasso neutrino beam,” JINST 4, 04018 (2009).

    Article  ADS  Google Scholar 

  4. Y. Fukuda et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81, 1562 (1998).

    Article  ADS  Google Scholar 

  5. L. Chaussard and G. Moret, “Vertex resolution and brick finding efficiency using scintillators information: Single charged particles simulation,” OPERA Internal note, 28 March, 2000.

  6. G. Moret et al., “Brick finding efficiency: Monte Carlo comparisons between several scintillating tracker options,” OPERA Internal note, 23 May, 2001.

    Google Scholar 

  7. I. Laktineh, “Brick finding efficiency in muonic decay tau neutrino events”, OPERA Internal note, 21 Jan., 2002.

    Google Scholar 

  8. I. Laktineh, “Brick finding efficiency of no-muon tau neutrino events in OPERA,” OPERA Internal note, 18 Nov., 2002.

    Google Scholar 

  9. S. Dmitrievsky, Yu. Gornushkin, and G. Ososkov, “Neural networks, cellular automata, and robust approach applications for vertex localization in the OPERA Target Tracker detector”, Preprint No. E10-2005-216 (Joint Institute for Nuclear Research, Dubna, 2005).

    Google Scholar 

  10. A. Chukanov, S. Dmitrievsky, and Yu. Gornushkin, “Neutrino interaction vertex location with the OPERA electronic detectors,” OPERA public note no. 162, 2013.

    Google Scholar 

  11. T. Adam et al. (OPERA Collaboration), “The OPERA experiment Target Tracker,” Nucl. Instrum. Methods Phys. Res. A 577, 523 (2007).

    Article  ADS  Google Scholar 

  12. A. Glazov, I. Kisel, E. Konotopskaya, and G. Ososkov, “Filtering tracks in discrete detectors using a cellular automaton,” Nucl. Instrum. Methods Phys. Res. A 329, 262–268 (1993).

    Article  ADS  Google Scholar 

  13. R. Brun et al., “GEANT3,” CERN-DD/EE/84-1 (1986).

    Google Scholar 

  14. P. V. C. Hough, “A method and means for recognizing complex patterns”, US Patent No. 3069654 (Dec. 1962).

    Google Scholar 

  15. G. Ososkov, “Elastic arm methods of data analysis as a robust approach,” Tatra Mount. Math. Publ 26, 291–306 (2003).

    MATH  MathSciNet  Google Scholar 

  16. T. Khanna, Foundation of Neural Networks (Addison-Wesley, New York, 1989).

    Google Scholar 

  17. M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,” SIAM J. Sci. Comp. 21(1), 1–23 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Zell, G. Mamier, M. Vogt, and N. Mache, http://www.ra.cs.uni-tuebingen.de/SNNS, 1998.

  19. Y. R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach. Stud. 28, 221 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Gornushkin.

Additional information

Original Russian Text © Yu.A. Gornushkin, S.G. Dmitrievsky, A.V. Chukanov, 2015, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornushkin, Y.A., Dmitrievsky, S.G. & Chukanov, A.V. Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment. Phys. Part. Nuclei Lett. 12, 89–99 (2015). https://doi.org/10.1134/S1547477115010100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115010100

Keywords

Navigation