Skip to main content

Experimental observation of electron screening for the D(p, γ)3He nuclear reaction in titanium Deuteride TiD

Abstract

Characteristics of the pd reaction (p + d3He + γ(5.5 MeV)) in titanium deuteride at astrophysical proton-deuteron collision energies ranging from 5.3 to 10.5 keV are investigated. Experiments are conducted on the pulsed plasma Hall accelerator at Tomsk Polytechnic University (Tomsk, Russia). The number of accelerated protons in a pulse 10 μs long is 5 × 1014 at a repetition rate of 7 × 10−2 Hz. Gamma rays with an energy of 5.5 MeV are recorded by eight detectors based on NaI(Tl) crystals (100 × 100 × 400 mm) arranged around the TiD target. The dependence of the astrophysical S factor for the pd reaction on the proton-deuteron collision energy and the electron screening potential of protons interacting with deuterons in titanium deuteride are measured for the first time.

This is a preview of subscription content, access via your institution.

References

  1. J. Kasagi et al., “Strongly enhanced DD fusion reaction in metals observed for keV D+ bombardment,” J. Phys. Soc. Jpn. 71, 2881 (2002).

    ADS  Article  Google Scholar 

  2. K. Czerski et al., “Experimental and theoretical screening energies for the d(d, p)3He reaction in metallic environments,” Eur. Phys. J. A 27, 83 (2006).

    ADS  Article  Google Scholar 

  3. F. Raiola et al., “Enhanced d(d, p)t fusion reaction in metals,” Eur. Phys. J. A 27, 79 (2006) (and references therein).

    ADS  Article  Google Scholar 

  4. A. Huke et al., “Measurement of the enhanced screening effect of d + d reactions in metals,” Nucl. Instrum. Meth. Phys. Res. B 256, 599 (2007).

    ADS  Article  Google Scholar 

  5. K. Czerski et al., “Measurements of enhanced electron screening in d + d reactions under UHV conditions,” J. Phys. G: Nucl. Part. Phys. 35, 014012 (2008).

    ADS  Article  Google Scholar 

  6. G. Ruprect et al., “Coherent resonance contributions in the reactions 6Li(d, α)4He and 10B(d, p) 11B at sub-Coulomb energies,” Phys. Rev. C 70, 025803 (2004).

    ADS  Article  Google Scholar 

  7. A. Huke et al., “Enhancement of deuteron-fusion reactions in metals and experimental implications,” Phys. Rev. C 78, 015803 (2008).

    ADS  Article  Google Scholar 

  8. V. M. Bystritsky et al., “Measurement of astrophysical S-factors and electron screening potentials for d(d, n)3He Reaction in ZrD2, TiD2, D2O and CD2 targets in the ultralow energy region using plasma accelerators,” Phys. Atom. Nucl. 75, 53–62 (2012).

    ADS  Article  Google Scholar 

  9. V. M. Bystritsky et al., “Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n)3He reaction proceeding in deuterides ZrD2 and TiD2,” Phys. Atom. Nucl. 75, 913–922 (2012).

    ADS  Article  Google Scholar 

  10. V. M. Bystritsky et al., “Measurement of astrophysical S-factor and electron screening potentials for d(d, n)3He reaction in ZrD2, TiD2 and TaD0.5 targets in the ultralow energy region using plasma accelerators,” Nucl. Phys. A 889, 93–104 (2012).

    ADS  Article  Google Scholar 

  11. V. M. Bystritsky et al., “Channeling effect in the d(d, n)3He reaction on the deuteride titanium crystals,” Izv. Vyssh. Ucheb. Zaved., Fiz. 55(11/2), 11 (2012).

    Google Scholar 

  12. C. Casella et al., “First measurement of the d(p, γ)3He cross section down to the solar Gamov peak,” Nucl. Phys. A 706, 203 (2002).

    ADS  Article  Google Scholar 

  13. G. M. Griffiths et al., “The reaction d(p,γ)3He below 50 keV,” Can. J. Phys. 41, 724 (1963).

    ADS  Article  Google Scholar 

  14. G. J. Schmid et al., “The 2H(p, γ)3He and 1≌H(d, γ)3He reactions below 80 keV,” Phys. Rev. C 56, 2565 (1997).

    ADS  Article  Google Scholar 

  15. V. M. Bystritsky et al., “Study of the pd reaction at ultralow energies using hydrogen liner plasma,” Phys. Atom. Nucl. 68, 1777–1786 (2005).

    ADS  Article  Google Scholar 

  16. V. M. Bystritsky et al., “Application of inverse Z-Pinch for the study of the pd-reaction at the keV energy range,” Nucl. Instrum. Meth. Phys. Res. A 565, 864 (2006).

    ADS  Article  Google Scholar 

  17. V. M. Bystritsky et al., “Study of the pd-reaction in the astrophysical energy region using the Hall accelerator,” Nuclear Instrum. Meth. Phys. Res. A 595, 543–548 (2008).

    ADS  Article  Google Scholar 

  18. U. Greife et al., “Oppenheimer-phyllips effect and election screening in d + d fusion reactions,” Z. Phys. A 351, 107 (1995).

    ADS  Article  Google Scholar 

  19. V. M. Bystritsky et al., “Study of the d(p, γ)3He reaction at ultralow energies using a zirconium deuteride target,” Submitted for publication in Nucl. Instrum. Meth. Phys. Res. A, 2013.

    Google Scholar 

  20. V. M. Bystritsky et al., “Measurement of astrophysical S-factors and cross sections of the d(p, γ)3He Reaction at the ultralow energy region using deuterated zirconium target,” Phys. Part. Nucl. Lett. 10, 717–722 (2013).

    Article  Google Scholar 

  21. V. M. Bystritsky et al., “Study of the d(d, n)3He reaction in the astrophysical energy region with the use of the Hall accelerator,” Eur. Phys. J. A 36, 151 (2008).

    ADS  Article  Google Scholar 

  22. G. N. Dudkin et al., “Mass thickness control of the adsorbed layer on a target surface in experiments on the study of the d(d, n)3He reaction at low deuteron collision energies,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53(10/2), 45 (2010).

    Google Scholar 

  23. G. N. Dudkin, V. N. Padalko, B. M. Nechaev, et al., “The determination of true quantity of accelerated particles (ions, neutrals) falling on a metal target,” in Proceeding of the 15th International Symposium on High-Current Electronics (15th SHCE), Tomsk, Russia, 2008, pp. 148–150.

  24. B. M. Nechaev et al., “Parameters of the flow of accelerated particles generated by the ion source with closed drift of electrons,” in Proceeding of the 15th International Symposium on High-Current Electronics (15th SHCE), Tomsk, Russia, 2008, pp. 152–153.

  25. A. P. Kobzev et al., “Investigation of light element contents in subsurface layers of silicon,” Vacuum 83, S124–S126 (2009).

    Article  Google Scholar 

  26. Chu Wei-Kan, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).

    Google Scholar 

  27. H. Yagi et al., “elastic recoil detection analysis for hydrogen near the surface of chemical-vapor-deposited diamond,” Japan. J. Appl. Phys. L577, 34 (1995).

    Google Scholar 

  28. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1983).

    Google Scholar 

  29. V. M. Bystritskii et al., “Investigation of parameters and optimization of characteristics of and ion source of accelerated particles,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11/2, 51 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bystritsky.

Additional information

Original Russian Text © V.M. Bystritsky, Vit.M. Bystritsky, G.N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, B.A. Nechaev, V.N. Padalko, S.S. Parzhitskii, F.M. Pen’kov, A.V. Filippov, Yu.Zh. Tuleushev, 2014, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bystritsky, V.M., Bystritsky, V.M., Dudkin, G.N. et al. Experimental observation of electron screening for the D(p, γ)3He nuclear reaction in titanium Deuteride TiD. Phys. Part. Nuclei Lett. 11, 467–472 (2014). https://doi.org/10.1134/S1547477114040104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114040104

Keywords

  • Nucleus Letter
  • Electron Screening
  • Deuteride
  • Elastic Recoil Detection
  • Ultralow Energy