Skip to main content
Log in

Optical model analysis of p+6He scattering over a wide range of energy

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Optical-model analysis of proton elastic scattering from 6He has been carried out for eight sets of elastic scattering data at energies, 24.5, 25.0, 36.2, 38.3, 40.9, 41.6, 71.0 and 82.3 MeV/n respectively. The vector analyzing power and differential cross section for the elastic scattering of 6He nucleus from polarized protons at 71 MeV have been analyzed in the framework of the optical model potentials. The data are, first, analyzed in term of phenomenological potentials using the Woods-Saxon form for the real and imaginary parts supplemented by a spin-orbit potential of Thomas form. The analysis has been also performed using microscopic complex potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett., Ser. B 160, 380 (1985); 206, 592 (1988); 287, 307 (1992); J. Phys., Ser. G 22, 157 (1996).

    Article  ADS  Google Scholar 

  2. Raj K. Gupta et al., J. Phys., Ser. G 28, 699 (2002).

    Article  ADS  Google Scholar 

  3. P. G. Hansen et al., Ann. Rev. Nucl. Part. Sci. 45, 591 (1995), and references therein.

    Article  ADS  Google Scholar 

  4. B. Jonson and K. Riisager, Philos. Trans. R. Soc., Ser. A 356, 323 (1998).

    Google Scholar 

  5. 5. I. Tanihata, Proceedings of the Seventh International Conference on Nucleus-Nucleus Collisions, Strasbourg, France, 2000 [Nucl. Phys., Ser. A 685, 80c (2001)], and references therein.

  6. A. Bhagwat, Y. K. Gambhir, and S. H. Patil, Eur. Phys. J., Ser. A 8, 511 (2000).

    Article  ADS  Google Scholar 

  7. J. C. Blackmon et al. Phys. Rev., Ser. C 72, 034606 (2005).

    Article  ADS  Google Scholar 

  8. M. El-Azab Farid, A. M. A. Nossair, and Awad A. Ibraheem, Inter. J. Mod. Phys., Ser. E 174, 715 (2008).

    Article  Google Scholar 

  9. Awad A. Ibraheem et al., Phys. Atom. Nucl. 75, 969 (2012).

    Article  ADS  Google Scholar 

  10. C. Signorini et al., Eur. Phys. J., Ser. A 44, 63 (2010).

    Article  ADS  Google Scholar 

  11. P. Mohr et al., Phys. Rev., Ser. C 82, 024606 (2010).

    Article  ADS  Google Scholar 

  12. S. Sakaguchi et al., Phys. Rev., Ser. C 84, 024604 (2011).

    Article  ADS  Google Scholar 

  13. S. R. Neumaier et al., Nucl. Phys., Ser. A 712, 247 (2002).

    Article  ADS  Google Scholar 

  14. G. D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997).

    Article  ADS  Google Scholar 

  15. R. Crespo and A. M. Moro, Phys. Rev., Ser. C 76, 054607 (2007).

    Article  ADS  Google Scholar 

  16. G. M. Ter-Akopian et al., Phys. Lett., Ser. B 426, 251 (1998).

    Article  ADS  Google Scholar 

  17. R. Wolski et al., JINR Rep., No. E15-98-284 (1998).

    Google Scholar 

  18. A. A. Korsheninnikov et al., Nucl. Phys., Ser. A 617, 45 (1997).

    Article  ADS  Google Scholar 

  19. M. D. Cortina-Gil et al., Phys. Lett., Ser. B 371, 14 (1996).

    Article  ADS  Google Scholar 

  20. A. Lagoyannis et al., Phys. Lett., Ser. B 518, 27 (2001).

    Article  ADS  Google Scholar 

  21. V. Lapoux et al., Phys. Lett., Ser. B 517, 18 (2001).

    Article  ADS  Google Scholar 

  22. A. de Vismes et al., Phys. Lett., Ser. B 505, 15 (2001).

    Article  ADS  Google Scholar 

  23. R. Wolski et al., Phys. Lett., Ser. B 467, 8 (1999).

    Article  ADS  Google Scholar 

  24. S. V. Stepantsov et al., Phys. Lett., Set. B 542, 35 (2002).

    Article  ADS  Google Scholar 

  25. B. Abu-Ibrahim, K. Fujimura, and Y. Suzuki, Nucl. Phys., Ser. A 657, 391 (1999).

    Article  ADS  Google Scholar 

  26. G. D. Alkhazov et al., Nucl. Phys., Ser. A 712, 269 (2002).

    Article  ADS  Google Scholar 

  27. D. Gupta, C. Samanta, and R. Kanungo, Nucl. Phys., Ser. A 674, 77 (2000).

    Article  ADS  Google Scholar 

  28. M. Avrigeanu, G. S. Anagnostatos, A. N. Antonov, and J. Giapitzakia, Phys. Rev., Ser. C 62, 017001 (2000).

    Article  ADS  Google Scholar 

  29. G. R. Satchler, Proceedings of the International Conference on Reactions between Complex Nuclei, Nashville, Tennessee, 1974, p. 171.

    Google Scholar 

  30. D. Gupta and C. Samanta, J. Phys., Ser. G 28, 85 (2002).

    Article  ADS  Google Scholar 

  31. M. Hatano et al., Eur. Phys. J., Ser. A 25, 255 (2005).

    Article  Google Scholar 

  32. S. P. Weppner, O. Garcia, and Ch. Elster, Phys. Rev., Ser. C 61, 044601 (2000).

    Article  ADS  Google Scholar 

  33. R. Crespo and A. M. Moro, Phys. Rev., Ser. C 76, 054607 (2007).

    Article  ADS  Google Scholar 

  34. S. Karataglidis, Y.J. Kim, and K. Amos, Nucl. Phys., Ser. A 793, 40 (2007); K. V. Lukyanov et al., Eur. Phys. J., Ser. A 33, 389 (2007).

    Article  ADS  Google Scholar 

  35. T. Uesaka et al., Phys. Rev., Ser. C 82, 021602(R) (2010).

    Article  ADS  Google Scholar 

  36. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  37. Dao T. Khoa, W. von Oertzen, and A. A. Ogloblin, Nucl. Phys., Ser. A 602, 98 (1996).

    Article  ADS  Google Scholar 

  38. D. N. Basu, P. Roy Chowdhury, and C. Samanta, Phys. Rev., Ser. C 72, 051601(R) (2005).

    Article  ADS  Google Scholar 

  39. Dao T. Khoa, Nucl. Phys., Ser. A 484, 376 (1988).

    Article  Google Scholar 

  40. F. Jamil-Qureshi, Chin. Phys. Lett. 27(9), 092501 (2010).

    Article  ADS  Google Scholar 

  41. J. Cook, Comp. Phys. Comm. 31, 363 (1984).

    Article  ADS  Google Scholar 

  42. D. T. Khoa, G. R. Satchler, and W. Von Oertzen, Phys. Rev., Ser. C 51, 2069 (1995), and references therein.

    Article  ADS  Google Scholar 

  43. G. D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997).

    Article  ADS  Google Scholar 

  44. B. Abu-Ibrahim and Y. Suzuki, Nucl. Phys., Ser. A 728, 118 (2003); 732, 218 (2004).

    Article  ADS  Google Scholar 

  45. A. de Vismes et al., Nucl. Phys., Ser. A 706, 295 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad A. Ibraheem.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, Z.M.M., Ibraheem, A.A. & El-Azab Farid, M. Optical model analysis of p+6He scattering over a wide range of energy. Phys. Part. Nuclei Lett. 11, 219–231 (2014). https://doi.org/10.1134/S1547477114030169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114030169

Keywords

Navigation