Skip to main content
Log in

The effect of Fermi momentum cutoff on the binding energy of closed shell nuclei in the LOCV framework

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The ground state binding energies of the light symmetric closed-shell nuclei, i.e., 4He, 12C, 16O and 40Ca and the heavy asymmetric ones, i.e., 48Ca, 90Zr and 120Sn are calculated in the harmonic oscillator (HOS) basis, by imposing the relative Fermi momentum cutoff of two point-like interacting nucleons on the density dependent average effective interactions (DDAEI). The DDAEI are generated through the lowest order constrained variational (LOCV) method calculations for the asymmetric nuclear matter with the operator and the channel dependent type bare nucleon-nucleon potentials, such as the Argonne \(Av_{18}^{j_{\max } = 2}\) and the Reid soft core, Reid68, interactions. In the framework of harmonic oscillator shell model, the cutoff is imposed by defining the maximum value of the relative quantum numbers (RQNmax) in two ways: (1) The RQNmax of the last shell and (2) the RQNmax of each shell, in the ground state of the nucleus. It is shown that present results on the binding energies and the root means square radius are closer to the corresponding experimental data than, our previous works with the same DDAEI potentials, but without the cutoff constraint. However, for the light symmetric nuclei, the second scheme gives less binding energy and larger root mean square radius compare to the first one. While the situation is reversed for the heavier nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Bethe, “Theory of nuclear matter,” Ann. Rev. Nucl. Part. Sci. 21, 93 (1971).

    Article  ADS  Google Scholar 

  2. J. G. Zabolitsky and W. Ey, “Momentum distributions of nucleons in nuclei,” Phys. Lett., Ser. B 76, 223 (1977).

    Google Scholar 

  3. V. R. Pandharipande, I. Sick, and P. K. A. Huberts, “Independent particle motion and correlations in Fermion systems,” Rev. Mod. Phys. 69, 981 (1997).

    Article  ADS  Google Scholar 

  4. J. C. Owen, R. F. Bishop, and J. M. Irvine, “Constrained variation in Jastrow method at high density,” Ann. Phys. (NY) 102, 170 (1976).

    Article  ADS  Google Scholar 

  5. M. Modarres and J. M. Irvine, “LOCV calculations with a self-consistent treatment of isobars,” J. Phys., Ser. G 5, 511 (1979).

    Article  ADS  Google Scholar 

  6. M. Modarres and G. H. Borbar, “Incompressibility of hot asymmetrical nuclear matter: lowest order constrained variational approach,” Phys. Rev., Ser. C 58, 2781 (1998).

    Article  ADS  Google Scholar 

  7. K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud, “Two-body forces and nuclear saturation, I: Central forces,” Phys. Rev. 95, 217 (1954).

    Article  ADS  MATH  Google Scholar 

  8. K. A. Brueckner and C. A. Levinson, “Approximate reduction of the many-body problem for strongly interacting particles to a problem of self-consistent fields,” Phys. Rev. 97, 1344 (1955).

    Article  ADS  MATH  Google Scholar 

  9. J. W. Negele, “Structure of finite nuclei in the local-density approximation,” Phys. Rev., Ser. C 1, 1260 (1970).

    Article  ADS  Google Scholar 

  10. R. V. Reid, “Local phenomenological nucleon-nucleon potentials,” Ann. Phys. 50, 411 (1969); B. D. Day, “Three-body correlations in nuclear matter,” Phys. Rev., Ser. C 24, 1203 (1981).

    Article  ADS  Google Scholar 

  11. A. M. Green, J. A. Niskanan, and M. E. Sainio, “The effect of the delta (1236) on the imaginary component of nucleon-nucleon phase-shifts,” J. Phys., Ser. G 4, 1055 (1978).

    Article  ADS  Google Scholar 

  12. R. B. Wiringa, V. G. J. Stocks, and R. Schiavilla, “Accurate nucleon-nucleon potential with charge-independence breaking,” Phys. Rev., Ser. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  13. M. Modarres and N. Rasekhinejad, “The effective potential and local density approximation approach to the binding energy of closed shell nuclei,” Phys. Rev., Ser. C 72, 014301 (2005).

    Article  ADS  Google Scholar 

  14. M. Modarres and N. Rasekhinejad, “Ground state of heavy closed shell nuclei: an effective interaction and local density approximation approach,” Phys. Rev., Ser. C 72, 064306 (2005).

    Article  ADS  Google Scholar 

  15. M. Modarres, N. Rasekhinejad, and H. Mariji, “The density-dependent AV18 effective interaction and ground state of closed shell nuclei,” Int. J. Mod. Phys., Ser. E 20(3) (2011).

    Google Scholar 

  16. M. Modarres, H. Mariji, and N. Rasekhinejad, “The effect of density dependent AV18 effective interaction on the ground state properties of heavy closed shell nuclei,” Nucl. Phys., Ser. A 859, 16 (2011).

    Article  ADS  Google Scholar 

  17. M. Modarres and H. Mariji, “The effect of non-diagonal two-body matrix elements on the binding energy of closed shell nuclei,” Phys. Rev., Ser. C 86, 054324 (2012).

    Article  ADS  Google Scholar 

  18. M. Modarres, “Local density approximation for alpha-particle binding energy,” J. Phys., Ser. G 10, 251 (1984).

    Article  ADS  Google Scholar 

  19. M. Modarres, H. R. Moshfegh, and H. Mariji, “Lowest order constrained variational and local density approximation approach to the hot alpha particle,” Can. J. Phys. 80, 911 (2002).

    Article  ADS  Google Scholar 

  20. L. Coraggio, N. Itaco, A. Covello, et al., “Ground-state properties of closed-shell nuclei with low-momentum realistic interactions,” Phys. Rev., Ser. C 68, 034320 (2003).

    Article  ADS  Google Scholar 

  21. L. Coraggio, A. Covello, A. Gargano, et al., “Nuclear Structure calculations and modern nucleon-nucleon potentials,” Phys. Rev., Ser. C 71, 014307 (2005).

    Article  ADS  Google Scholar 

  22. L. Coraggio, A. Covello, A. Gargano, et al., “Nuclear structure calculations with low-momentum potentials in a model space truncation approach,” Phys. Rev., Ser. C 73, 014304 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Modarres.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariji, H., Modarres, M. The effect of Fermi momentum cutoff on the binding energy of closed shell nuclei in the LOCV framework. Phys. Part. Nuclei Lett. 11, 245–251 (2014). https://doi.org/10.1134/S1547477114030133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114030133

Keywords

Navigation