Skip to main content
Log in

Quantum model of the Thomson helium atom

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A quantum model of the Thomson helium atom is considered within the framework of stationary perturbation theory. It is shown that from a formal point of view this problem is similar to that of two-electron states in a parabolic quantum dot. The ground state energy of the quantum Thomson helium atom is estimated on the basis of Heisenberg’s uncertainty principle. The ground state energies obtained in the first order of perturbation theory and qualitative estimate provide, respectively, upper and lower estimates of eigenvalues derived by numerically solving the problem for a quantum model. The conditions under which the Kohn theorem holds in this system, when the values of resonance absorption frequencies are independent of the Coulomb interaction between electrons, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thomson, “XXIV. On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure,” Philos. Mag., Ser. 6 7, 237–265 (1904).

    Article  MATH  Google Scholar 

  2. A. Walton, “The Kelvin-Thomson atom. I. The one- to six-electron atoms,” Phys. Educ. 12, 326–328 (1977).

    Article  ADS  Google Scholar 

  3. J. J. Thomson, “On the structure of the atom,” Philos. Mag. 26, 792–799 (1913).

    Article  MATH  Google Scholar 

  4. I. V. Savel’ev, Course of General Physics (Nauka, Moscow, 1988), Vol. 3 [in Russian].

    Google Scholar 

  5. H. Zatzkis, “Thomson Atom,” Am. J. Phys. 26, 635–638 (1958).

    Article  ADS  Google Scholar 

  6. E. Kazaryan, L. Petrosyan, and H. Sarkisyan, “Impurity levels in a parabolic quantum dot under action of a strong magnetic field,” Int. J. Mod. Phys. B 15, 4103–4110 (2001).

    Article  ADS  Google Scholar 

  7. M. Moshinsky, The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Nauka, Moscow, 1972; Gordon Breach, New York, 1969).

    Google Scholar 

  8. A. G. Ahrashkevich et al., “Adiabatic hyperspherical representation in barycentric coordinates for heliumlike systems,” J. Phys. B: At. Mol. Opt. Phys. 24, 1615–1638 (1991).

    Article  ADS  Google Scholar 

  9. A. A. Gusev et al., “POTHEA: A program for computing effective potentials, energy levels and wave functions in the coupled-channel hyperspherical adiabatic approach,” in Proceedings of the International Conference on Mathematical Modeling and Computational Physics, July 8–12, 2013 (Dubna, Russia, 2013), p. 94. http://wwwinfo.jinr.ru/programs/jinrlib/kantbp]

    Google Scholar 

  10. O. Chuluunbaatar et al., “KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach,” Comput. Phys. Commun. 179, 685–693 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. W. Kohn, “Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas,” Phys. Rev. 123, 1242–1244 (1961).

    Article  ADS  MATH  Google Scholar 

  12. P. Maksym and T. Chakraborty, “Quantum dots in a magnetic field: Role of electron-electron interactions,” Phys. Rev. Lett. 65, 108–111 (1990).

    Article  ADS  Google Scholar 

  13. F. Peeters, “Magneto-optics in parabolic quantum dots,” Phys. Rev. B: Condens. Matter 42, 1486–1487 (1990).

    Article  ADS  Google Scholar 

  14. A. K. Sarkisyan, “On the criteria of the applicability of single particle transitions in the multiparticle system,” Phys. Part. Nucl. Lett. 4, 51 (2007).

    Article  Google Scholar 

  15. V. M. Kovalev and A. V. Chaplik, “Composite particles in quantum wells,” JETP Lett. 88, 454–457 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Sarkisyan.

Additional information

Original Russian Text © E.M. Kazaryan, V.A. Shakhnazaryan, H.A. Sarkisyan, A.A. Gusev, 2014, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazaryan, E.M., Shakhnazaryan, V.A., Sarkisyan, H.A. et al. Quantum model of the Thomson helium atom. Phys. Part. Nuclei Lett. 11, 109–113 (2014). https://doi.org/10.1134/S154747711402023X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747711402023X

Keywords

Navigation